Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalem17 Structured version   Visualization version   Unicode version

Theorem dalem17 34966
Description: Lemma for dath 35022. When planes  Y and 
Z are equal, the center of perspectivity  C is in  Y. (Contributed by NM, 1-Aug-2012.)
Hypotheses
Ref Expression
dalema.ph  |-  ( ph  <->  ( ( ( K  e.  HL  /\  C  e.  ( Base `  K
) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  ( Y  e.  O  /\  Z  e.  O )  /\  ( ( -.  C  .<_  ( P  .\/  Q
)  /\  -.  C  .<_  ( Q  .\/  R
)  /\  -.  C  .<_  ( R  .\/  P
) )  /\  ( -.  C  .<_  ( S 
.\/  T )  /\  -.  C  .<_  ( T 
.\/  U )  /\  -.  C  .<_  ( U 
.\/  S ) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q 
.\/  T )  /\  C  .<_  ( R  .\/  U ) ) ) ) )
dalemc.l  |-  .<_  =  ( le `  K )
dalemc.j  |-  .\/  =  ( join `  K )
dalemc.a  |-  A  =  ( Atoms `  K )
dalem17.o  |-  O  =  ( LPlanes `  K )
dalem17.y  |-  Y  =  ( ( P  .\/  Q )  .\/  R )
dalem17.z  |-  Z  =  ( ( S  .\/  T )  .\/  U )
Assertion
Ref Expression
dalem17  |-  ( (
ph  /\  Y  =  Z )  ->  C  .<_  Y )

Proof of Theorem dalem17
StepHypRef Expression
1 dalema.ph . . . 4  |-  ( ph  <->  ( ( ( K  e.  HL  /\  C  e.  ( Base `  K
) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  ( Y  e.  O  /\  Z  e.  O )  /\  ( ( -.  C  .<_  ( P  .\/  Q
)  /\  -.  C  .<_  ( Q  .\/  R
)  /\  -.  C  .<_  ( R  .\/  P
) )  /\  ( -.  C  .<_  ( S 
.\/  T )  /\  -.  C  .<_  ( T 
.\/  U )  /\  -.  C  .<_  ( U 
.\/  S ) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q 
.\/  T )  /\  C  .<_  ( R  .\/  U ) ) ) ) )
21dalemclrju 34922 . . 3  |-  ( ph  ->  C  .<_  ( R  .\/  U ) )
32adantr 481 . 2  |-  ( (
ph  /\  Y  =  Z )  ->  C  .<_  ( R  .\/  U
) )
41dalemkelat 34910 . . . . . 6  |-  ( ph  ->  K  e.  Lat )
5 dalemc.j . . . . . . 7  |-  .\/  =  ( join `  K )
6 dalemc.a . . . . . . 7  |-  A  =  ( Atoms `  K )
71, 5, 6dalempjqeb 34931 . . . . . 6  |-  ( ph  ->  ( P  .\/  Q
)  e.  ( Base `  K ) )
81, 6dalemreb 34927 . . . . . 6  |-  ( ph  ->  R  e.  ( Base `  K ) )
9 eqid 2622 . . . . . . 7  |-  ( Base `  K )  =  (
Base `  K )
10 dalemc.l . . . . . . 7  |-  .<_  =  ( le `  K )
119, 10, 5latlej2 17061 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( P  .\/  Q )  e.  ( Base `  K
)  /\  R  e.  ( Base `  K )
)  ->  R  .<_  ( ( P  .\/  Q
)  .\/  R )
)
124, 7, 8, 11syl3anc 1326 . . . . 5  |-  ( ph  ->  R  .<_  ( ( P  .\/  Q )  .\/  R ) )
13 dalem17.y . . . . 5  |-  Y  =  ( ( P  .\/  Q )  .\/  R )
1412, 13syl6breqr 4695 . . . 4  |-  ( ph  ->  R  .<_  Y )
1514adantr 481 . . 3  |-  ( (
ph  /\  Y  =  Z )  ->  R  .<_  Y )
161, 5, 6dalemsjteb 34932 . . . . . . 7  |-  ( ph  ->  ( S  .\/  T
)  e.  ( Base `  K ) )
171, 6dalemueb 34930 . . . . . . 7  |-  ( ph  ->  U  e.  ( Base `  K ) )
189, 10, 5latlej2 17061 . . . . . . 7  |-  ( ( K  e.  Lat  /\  ( S  .\/  T )  e.  ( Base `  K
)  /\  U  e.  ( Base `  K )
)  ->  U  .<_  ( ( S  .\/  T
)  .\/  U )
)
194, 16, 17, 18syl3anc 1326 . . . . . 6  |-  ( ph  ->  U  .<_  ( ( S  .\/  T )  .\/  U ) )
20 dalem17.z . . . . . 6  |-  Z  =  ( ( S  .\/  T )  .\/  U )
2119, 20syl6breqr 4695 . . . . 5  |-  ( ph  ->  U  .<_  Z )
2221adantr 481 . . . 4  |-  ( (
ph  /\  Y  =  Z )  ->  U  .<_  Z )
23 simpr 477 . . . 4  |-  ( (
ph  /\  Y  =  Z )  ->  Y  =  Z )
2422, 23breqtrrd 4681 . . 3  |-  ( (
ph  /\  Y  =  Z )  ->  U  .<_  Y )
25 dalem17.o . . . . . 6  |-  O  =  ( LPlanes `  K )
261, 25dalemyeb 34935 . . . . 5  |-  ( ph  ->  Y  e.  ( Base `  K ) )
279, 10, 5latjle12 17062 . . . . 5  |-  ( ( K  e.  Lat  /\  ( R  e.  ( Base `  K )  /\  U  e.  ( Base `  K )  /\  Y  e.  ( Base `  K
) ) )  -> 
( ( R  .<_  Y  /\  U  .<_  Y )  <-> 
( R  .\/  U
)  .<_  Y ) )
284, 8, 17, 26, 27syl13anc 1328 . . . 4  |-  ( ph  ->  ( ( R  .<_  Y  /\  U  .<_  Y )  <-> 
( R  .\/  U
)  .<_  Y ) )
2928adantr 481 . . 3  |-  ( (
ph  /\  Y  =  Z )  ->  (
( R  .<_  Y  /\  U  .<_  Y )  <->  ( R  .\/  U )  .<_  Y ) )
3015, 24, 29mpbi2and 956 . 2  |-  ( (
ph  /\  Y  =  Z )  ->  ( R  .\/  U )  .<_  Y )
311, 6dalemceb 34924 . . . 4  |-  ( ph  ->  C  e.  ( Base `  K ) )
321dalemkehl 34909 . . . . 5  |-  ( ph  ->  K  e.  HL )
331dalemrea 34914 . . . . 5  |-  ( ph  ->  R  e.  A )
341dalemuea 34917 . . . . 5  |-  ( ph  ->  U  e.  A )
359, 5, 6hlatjcl 34653 . . . . 5  |-  ( ( K  e.  HL  /\  R  e.  A  /\  U  e.  A )  ->  ( R  .\/  U
)  e.  ( Base `  K ) )
3632, 33, 34, 35syl3anc 1326 . . . 4  |-  ( ph  ->  ( R  .\/  U
)  e.  ( Base `  K ) )
379, 10lattr 17056 . . . 4  |-  ( ( K  e.  Lat  /\  ( C  e.  ( Base `  K )  /\  ( R  .\/  U )  e.  ( Base `  K
)  /\  Y  e.  ( Base `  K )
) )  ->  (
( C  .<_  ( R 
.\/  U )  /\  ( R  .\/  U ) 
.<_  Y )  ->  C  .<_  Y ) )
384, 31, 36, 26, 37syl13anc 1328 . . 3  |-  ( ph  ->  ( ( C  .<_  ( R  .\/  U )  /\  ( R  .\/  U )  .<_  Y )  ->  C  .<_  Y )
)
3938adantr 481 . 2  |-  ( (
ph  /\  Y  =  Z )  ->  (
( C  .<_  ( R 
.\/  U )  /\  ( R  .\/  U ) 
.<_  Y )  ->  C  .<_  Y ) )
403, 30, 39mp2and 715 1  |-  ( (
ph  /\  Y  =  Z )  ->  C  .<_  Y )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   Basecbs 15857   lecple 15948   joincjn 16944   Latclat 17045   Atomscatm 34550   HLchlt 34637   LPlanesclpl 34778
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-poset 16946  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-lat 17046  df-ats 34554  df-atl 34585  df-cvlat 34609  df-hlat 34638  df-lplanes 34785
This theorem is referenced by:  dalem19  34968  dalem25  34984
  Copyright terms: Public domain W3C validator