Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rencldnfilem Structured version   Visualization version   Unicode version

Theorem rencldnfilem 37384
Description: Lemma for rencldnfi 37385. (Contributed by Stefan O'Rear, 18-Oct-2014.)
Assertion
Ref Expression
rencldnfilem  |-  ( ( ( A  C_  RR  /\  B  e.  RR  /\  ( A  =/=  (/)  /\  -.  B  e.  A )
)  /\  A. x  e.  RR+  E. y  e.  A  ( abs `  (
y  -  B ) )  <  x )  ->  -.  A  e.  Fin )
Distinct variable groups:    x, A, y    x, B, y

Proof of Theorem rencldnfilem
Dummy variables  a 
b  c  d are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq1 2626 . . . . . . . . . . . . 13  |-  ( a  =  c  ->  (
a  =  ( abs `  ( b  -  B
) )  <->  c  =  ( abs `  ( b  -  B ) ) ) )
21rexbidv 3052 . . . . . . . . . . . 12  |-  ( a  =  c  ->  ( E. b  e.  A  a  =  ( abs `  ( b  -  B
) )  <->  E. b  e.  A  c  =  ( abs `  ( b  -  B ) ) ) )
32elrab 3363 . . . . . . . . . . 11  |-  ( c  e.  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B ) ) }  <->  ( c  e.  RR  /\  E. b  e.  A  c  =  ( abs `  ( b  -  B ) ) ) )
4 simp-4l 806 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( A 
C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  c  e.  RR )  /\  b  e.  A
)  ->  A  C_  RR )
5 simpr 477 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( A 
C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  c  e.  RR )  /\  b  e.  A
)  ->  b  e.  A )
64, 5sseldd 3604 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( A 
C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  c  e.  RR )  /\  b  e.  A
)  ->  b  e.  RR )
76recnd 10068 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( A 
C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  c  e.  RR )  /\  b  e.  A
)  ->  b  e.  CC )
8 simp-4r 807 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( A 
C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  c  e.  RR )  /\  b  e.  A
)  ->  B  e.  RR )
98recnd 10068 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( A 
C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  c  e.  RR )  /\  b  e.  A
)  ->  B  e.  CC )
107, 9subcld 10392 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( A 
C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  c  e.  RR )  /\  b  e.  A
)  ->  ( b  -  B )  e.  CC )
11 simprr 796 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  ->  -.  B  e.  A
)
1211ad2antrr 762 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( A 
C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  c  e.  RR )  /\  b  e.  A
)  ->  -.  B  e.  A )
13 nelneq 2725 . . . . . . . . . . . . . . . . 17  |-  ( ( b  e.  A  /\  -.  B  e.  A
)  ->  -.  b  =  B )
145, 12, 13syl2anc 693 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( A 
C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  c  e.  RR )  /\  b  e.  A
)  ->  -.  b  =  B )
15 subeq0 10307 . . . . . . . . . . . . . . . . . 18  |-  ( ( b  e.  CC  /\  B  e.  CC )  ->  ( ( b  -  B )  =  0  <-> 
b  =  B ) )
1615necon3abid 2830 . . . . . . . . . . . . . . . . 17  |-  ( ( b  e.  CC  /\  B  e.  CC )  ->  ( ( b  -  B )  =/=  0  <->  -.  b  =  B ) )
177, 9, 16syl2anc 693 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( A 
C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  c  e.  RR )  /\  b  e.  A
)  ->  ( (
b  -  B )  =/=  0  <->  -.  b  =  B ) )
1814, 17mpbird 247 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( A 
C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  c  e.  RR )  /\  b  e.  A
)  ->  ( b  -  B )  =/=  0
)
1910, 18absrpcld 14187 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( A 
C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  c  e.  RR )  /\  b  e.  A
)  ->  ( abs `  ( b  -  B
) )  e.  RR+ )
20 eleq1 2689 . . . . . . . . . . . . . 14  |-  ( c  =  ( abs `  (
b  -  B ) )  ->  ( c  e.  RR+  <->  ( abs `  (
b  -  B ) )  e.  RR+ )
)
2119, 20syl5ibrcom 237 . . . . . . . . . . . . 13  |-  ( ( ( ( ( A 
C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  c  e.  RR )  /\  b  e.  A
)  ->  ( c  =  ( abs `  (
b  -  B ) )  ->  c  e.  RR+ ) )
2221rexlimdva 3031 . . . . . . . . . . . 12  |-  ( ( ( ( A  C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  c  e.  RR )  ->  ( E. b  e.  A  c  =  ( abs `  ( b  -  B ) )  ->  c  e.  RR+ ) )
2322expimpd 629 . . . . . . . . . . 11  |-  ( ( ( A  C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  -> 
( ( c  e.  RR  /\  E. b  e.  A  c  =  ( abs `  ( b  -  B ) ) )  ->  c  e.  RR+ ) )
243, 23syl5bi 232 . . . . . . . . . 10  |-  ( ( ( A  C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  -> 
( c  e.  {
a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) }  ->  c  e.  RR+ ) )
2524ssrdv 3609 . . . . . . . . 9  |-  ( ( ( A  C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  ->  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) }  C_  RR+ )
2625adantr 481 . . . . . . . 8  |-  ( ( ( ( A  C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  A  e.  Fin )  ->  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) }  C_  RR+ )
27 abrexfi 8266 . . . . . . . . . . 11  |-  ( A  e.  Fin  ->  { a  |  E. b  e.  A  a  =  ( abs `  ( b  -  B ) ) }  e.  Fin )
28 rabssab 3690 . . . . . . . . . . 11  |-  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  (
b  -  B ) ) }  C_  { a  |  E. b  e.  A  a  =  ( abs `  ( b  -  B ) ) }
29 ssfi 8180 . . . . . . . . . . 11  |-  ( ( { a  |  E. b  e.  A  a  =  ( abs `  (
b  -  B ) ) }  e.  Fin  /\ 
{ a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) }  C_  { a  |  E. b  e.  A  a  =  ( abs `  ( b  -  B ) ) } )  ->  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  (
b  -  B ) ) }  e.  Fin )
3027, 28, 29sylancl 694 . . . . . . . . . 10  |-  ( A  e.  Fin  ->  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  (
b  -  B ) ) }  e.  Fin )
3130adantl 482 . . . . . . . . 9  |-  ( ( ( ( A  C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  A  e.  Fin )  ->  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) }  e.  Fin )
32 simplrl 800 . . . . . . . . . . 11  |-  ( ( ( ( A  C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  A  e.  Fin )  ->  A  =/=  (/) )
33 n0 3931 . . . . . . . . . . 11  |-  ( A  =/=  (/)  <->  E. y  y  e.  A )
3432, 33sylib 208 . . . . . . . . . 10  |-  ( ( ( ( A  C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  A  e.  Fin )  ->  E. y  y  e.  A )
35 simp-4l 806 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( A 
C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  A  e.  Fin )  /\  y  e.  A
)  ->  A  C_  RR )
36 simpr 477 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( A 
C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  A  e.  Fin )  /\  y  e.  A
)  ->  y  e.  A )
3735, 36sseldd 3604 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( A 
C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  A  e.  Fin )  /\  y  e.  A
)  ->  y  e.  RR )
3837recnd 10068 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( A 
C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  A  e.  Fin )  /\  y  e.  A
)  ->  y  e.  CC )
39 simp-4r 807 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( A 
C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  A  e.  Fin )  /\  y  e.  A
)  ->  B  e.  RR )
4039recnd 10068 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( A 
C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  A  e.  Fin )  /\  y  e.  A
)  ->  B  e.  CC )
4138, 40subcld 10392 . . . . . . . . . . . . 13  |-  ( ( ( ( ( A 
C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  A  e.  Fin )  /\  y  e.  A
)  ->  ( y  -  B )  e.  CC )
4241abscld 14175 . . . . . . . . . . . 12  |-  ( ( ( ( ( A 
C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  A  e.  Fin )  /\  y  e.  A
)  ->  ( abs `  ( y  -  B
) )  e.  RR )
43 eqid 2622 . . . . . . . . . . . . . 14  |-  ( abs `  ( y  -  B
) )  =  ( abs `  ( y  -  B ) )
44 oveq1 6657 . . . . . . . . . . . . . . . . 17  |-  ( b  =  y  ->  (
b  -  B )  =  ( y  -  B ) )
4544fveq2d 6195 . . . . . . . . . . . . . . . 16  |-  ( b  =  y  ->  ( abs `  ( b  -  B ) )  =  ( abs `  (
y  -  B ) ) )
4645eqeq2d 2632 . . . . . . . . . . . . . . 15  |-  ( b  =  y  ->  (
( abs `  (
y  -  B ) )  =  ( abs `  ( b  -  B
) )  <->  ( abs `  ( y  -  B
) )  =  ( abs `  ( y  -  B ) ) ) )
4746rspcev 3309 . . . . . . . . . . . . . 14  |-  ( ( y  e.  A  /\  ( abs `  ( y  -  B ) )  =  ( abs `  (
y  -  B ) ) )  ->  E. b  e.  A  ( abs `  ( y  -  B
) )  =  ( abs `  ( b  -  B ) ) )
4843, 47mpan2 707 . . . . . . . . . . . . 13  |-  ( y  e.  A  ->  E. b  e.  A  ( abs `  ( y  -  B
) )  =  ( abs `  ( b  -  B ) ) )
4948adantl 482 . . . . . . . . . . . 12  |-  ( ( ( ( ( A 
C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  A  e.  Fin )  /\  y  e.  A
)  ->  E. b  e.  A  ( abs `  ( y  -  B
) )  =  ( abs `  ( b  -  B ) ) )
50 eqeq1 2626 . . . . . . . . . . . . . 14  |-  ( a  =  ( abs `  (
y  -  B ) )  ->  ( a  =  ( abs `  (
b  -  B ) )  <->  ( abs `  (
y  -  B ) )  =  ( abs `  ( b  -  B
) ) ) )
5150rexbidv 3052 . . . . . . . . . . . . 13  |-  ( a  =  ( abs `  (
y  -  B ) )  ->  ( E. b  e.  A  a  =  ( abs `  (
b  -  B ) )  <->  E. b  e.  A  ( abs `  ( y  -  B ) )  =  ( abs `  (
b  -  B ) ) ) )
5251elrab 3363 . . . . . . . . . . . 12  |-  ( ( abs `  ( y  -  B ) )  e.  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B ) ) }  <->  ( ( abs `  ( y  -  B
) )  e.  RR  /\ 
E. b  e.  A  ( abs `  ( y  -  B ) )  =  ( abs `  (
b  -  B ) ) ) )
5342, 49, 52sylanbrc 698 . . . . . . . . . . 11  |-  ( ( ( ( ( A 
C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  A  e.  Fin )  /\  y  e.  A
)  ->  ( abs `  ( y  -  B
) )  e.  {
a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) } )
54 ne0i 3921 . . . . . . . . . . 11  |-  ( ( abs `  ( y  -  B ) )  e.  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B ) ) }  ->  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B ) ) }  =/=  (/) )
5553, 54syl 17 . . . . . . . . . 10  |-  ( ( ( ( ( A 
C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  A  e.  Fin )  /\  y  e.  A
)  ->  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B ) ) }  =/=  (/) )
5634, 55exlimddv 1863 . . . . . . . . 9  |-  ( ( ( ( A  C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  A  e.  Fin )  ->  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) }  =/=  (/) )
57 ssrab2 3687 . . . . . . . . . 10  |-  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  (
b  -  B ) ) }  C_  RR
5857a1i 11 . . . . . . . . 9  |-  ( ( ( ( A  C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  A  e.  Fin )  ->  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) }  C_  RR )
59 gtso 10119 . . . . . . . . . 10  |-  `'  <  Or  RR
60 fisupcl 8375 . . . . . . . . . 10  |-  ( ( `'  <  Or  RR  /\  ( { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) }  e.  Fin  /\  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B ) ) }  =/=  (/)  /\  {
a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) }  C_  RR ) )  ->  sup ( { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) } ,  RR ,  `'  <  )  e.  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B ) ) } )
6159, 60mpan 706 . . . . . . . . 9  |-  ( ( { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) }  e.  Fin  /\  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B ) ) }  =/=  (/)  /\  {
a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) }  C_  RR )  ->  sup ( { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) } ,  RR ,  `'  <  )  e.  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B ) ) } )
6231, 56, 58, 61syl3anc 1326 . . . . . . . 8  |-  ( ( ( ( A  C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  A  e.  Fin )  ->  sup ( { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  (
b  -  B ) ) } ,  RR ,  `'  <  )  e. 
{ a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) } )
6326, 62sseldd 3604 . . . . . . 7  |-  ( ( ( ( A  C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  A  e.  Fin )  ->  sup ( { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  (
b  -  B ) ) } ,  RR ,  `'  <  )  e.  RR+ )
6457a1i 11 . . . . . . . . . . 11  |-  ( ( ( ( ( A 
C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  A  e.  Fin )  /\  y  e.  A
)  ->  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B ) ) }  C_  RR )
65 soss 5053 . . . . . . . . . . . . . . . 16  |-  ( { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) }  C_  RR  ->  ( `'  <  Or  RR  ->  `'  <  Or 
{ a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) } ) )
6657, 59, 65mp2 9 . . . . . . . . . . . . . . 15  |-  `'  <  Or 
{ a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) }
6766a1i 11 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  A  e.  Fin )  ->  `'  <  Or  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  (
b  -  B ) ) } )
68 fisupg 8208 . . . . . . . . . . . . . 14  |-  ( ( `'  <  Or  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  (
b  -  B ) ) }  /\  {
a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) }  e.  Fin  /\  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B ) ) }  =/=  (/) )  ->  E. c  e.  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  (
b  -  B ) ) }  ( A. d  e.  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B ) ) }  -.  c `'  <  d  /\  A. d  e.  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B ) ) }  ( d `'  <  c  ->  E. x  e.  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) } d `'  <  x ) ) )
6967, 31, 56, 68syl3anc 1326 . . . . . . . . . . . . 13  |-  ( ( ( ( A  C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  A  e.  Fin )  ->  E. c  e.  {
a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) }  ( A. d  e.  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  (
b  -  B ) ) }  -.  c `'  <  d  /\  A. d  e.  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B ) ) }  ( d `'  <  c  ->  E. x  e.  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) } d `'  <  x ) ) )
70 elrabi 3359 . . . . . . . . . . . . . . 15  |-  ( c  e.  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B ) ) }  ->  c  e.  RR )
71 elrabi 3359 . . . . . . . . . . . . . . . . . 18  |-  ( d  e.  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B ) ) }  ->  d  e.  RR )
72 vex 3203 . . . . . . . . . . . . . . . . . . . . . 22  |-  c  e. 
_V
73 vex 3203 . . . . . . . . . . . . . . . . . . . . . 22  |-  d  e. 
_V
7472, 73brcnv 5305 . . . . . . . . . . . . . . . . . . . . 21  |-  ( c `'  <  d  <->  d  <  c )
7574notbii 310 . . . . . . . . . . . . . . . . . . . 20  |-  ( -.  c `'  <  d  <->  -.  d  <  c )
76 lenlt 10116 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( c  e.  RR  /\  d  e.  RR )  ->  ( c  <_  d  <->  -.  d  <  c ) )
7776biimprd 238 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( c  e.  RR  /\  d  e.  RR )  ->  ( -.  d  < 
c  ->  c  <_  d ) )
7875, 77syl5bi 232 . . . . . . . . . . . . . . . . . . 19  |-  ( ( c  e.  RR  /\  d  e.  RR )  ->  ( -.  c `'  <  d  ->  c  <_  d ) )
7978adantll 750 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( A  C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  A  e.  Fin )  /\  c  e.  RR )  /\  d  e.  RR )  ->  ( -.  c `'  <  d  ->  c  <_  d ) )
8071, 79sylan2 491 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( A  C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  A  e.  Fin )  /\  c  e.  RR )  /\  d  e.  {
a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) } )  ->  ( -.  c `'  <  d  ->  c  <_  d ) )
8180ralimdva 2962 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( A 
C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  A  e.  Fin )  /\  c  e.  RR )  ->  ( A. d  e.  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) }  -.  c `'  <  d  ->  A. d  e.  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  (
b  -  B ) ) } c  <_ 
d ) )
8281adantrd 484 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( A 
C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  A  e.  Fin )  /\  c  e.  RR )  ->  ( ( A. d  e.  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B ) ) }  -.  c `'  <  d  /\  A. d  e.  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B ) ) }  ( d `'  <  c  ->  E. x  e.  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) } d `'  <  x ) )  ->  A. d  e.  {
a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) } c  <_  d ) )
8370, 82sylan2 491 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( A 
C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  A  e.  Fin )  /\  c  e.  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  (
b  -  B ) ) } )  -> 
( ( A. d  e.  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) }  -.  c `'  <  d  /\  A. d  e.  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  (
b  -  B ) ) }  ( d `'  <  c  ->  E. x  e.  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) } d `'  <  x ) )  ->  A. d  e.  {
a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) } c  <_  d ) )
8483reximdva 3017 . . . . . . . . . . . . 13  |-  ( ( ( ( A  C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  A  e.  Fin )  ->  ( E. c  e. 
{ a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) }  ( A. d  e.  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  (
b  -  B ) ) }  -.  c `'  <  d  /\  A. d  e.  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B ) ) }  ( d `'  <  c  ->  E. x  e.  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) } d `'  <  x ) )  ->  E. c  e.  {
a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) } A. d  e.  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B ) ) } c  <_  d
) )
8569, 84mpd 15 . . . . . . . . . . . 12  |-  ( ( ( ( A  C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  A  e.  Fin )  ->  E. c  e.  {
a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) } A. d  e.  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B ) ) } c  <_  d
)
8685adantr 481 . . . . . . . . . . 11  |-  ( ( ( ( ( A 
C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  A  e.  Fin )  /\  y  e.  A
)  ->  E. c  e.  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) } A. d  e.  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B ) ) } c  <_  d
)
87 lbinfle 10978 . . . . . . . . . . 11  |-  ( ( { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) }  C_  RR  /\  E. c  e. 
{ a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) } A. d  e.  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B ) ) } c  <_  d  /\  ( abs `  (
y  -  B ) )  e.  { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  (
b  -  B ) ) } )  -> inf ( { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) } ,  RR ,  <  )  <_ 
( abs `  (
y  -  B ) ) )
8864, 86, 53, 87syl3anc 1326 . . . . . . . . . 10  |-  ( ( ( ( ( A 
C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  A  e.  Fin )  /\  y  e.  A
)  -> inf ( {
a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) } ,  RR ,  <  )  <_ 
( abs `  (
y  -  B ) ) )
89 df-inf 8349 . . . . . . . . . . . 12  |- inf ( { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) } ,  RR ,  <  )  =  sup ( { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  (
b  -  B ) ) } ,  RR ,  `'  <  )
9089eqcomi 2631 . . . . . . . . . . 11  |-  sup ( { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) } ,  RR ,  `'  <  )  = inf ( { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  (
b  -  B ) ) } ,  RR ,  <  )
9190breq1i 4660 . . . . . . . . . 10  |-  ( sup ( { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B ) ) } ,  RR ,  `'  <  )  <_  ( abs `  ( y  -  B ) )  <-> inf ( {
a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) } ,  RR ,  <  )  <_ 
( abs `  (
y  -  B ) ) )
9288, 91sylibr 224 . . . . . . . . 9  |-  ( ( ( ( ( A 
C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  A  e.  Fin )  /\  y  e.  A
)  ->  sup ( { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) } ,  RR ,  `'  <  )  <_  ( abs `  (
y  -  B ) ) )
9357, 62sseldi 3601 . . . . . . . . . . 11  |-  ( ( ( ( A  C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  A  e.  Fin )  ->  sup ( { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  (
b  -  B ) ) } ,  RR ,  `'  <  )  e.  RR )
9493adantr 481 . . . . . . . . . 10  |-  ( ( ( ( ( A 
C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  A  e.  Fin )  /\  y  e.  A
)  ->  sup ( { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) } ,  RR ,  `'  <  )  e.  RR )
9594, 42lenltd 10183 . . . . . . . . 9  |-  ( ( ( ( ( A 
C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  A  e.  Fin )  /\  y  e.  A
)  ->  ( sup ( { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) } ,  RR ,  `'  <  )  <_  ( abs `  (
y  -  B ) )  <->  -.  ( abs `  ( y  -  B
) )  <  sup ( { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) } ,  RR ,  `'  <  ) ) )
9692, 95mpbid 222 . . . . . . . 8  |-  ( ( ( ( ( A 
C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  A  e.  Fin )  /\  y  e.  A
)  ->  -.  ( abs `  ( y  -  B ) )  <  sup ( { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B ) ) } ,  RR ,  `'  <  ) )
9796ralrimiva 2966 . . . . . . 7  |-  ( ( ( ( A  C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  A  e.  Fin )  ->  A. y  e.  A  -.  ( abs `  (
y  -  B ) )  <  sup ( { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) } ,  RR ,  `'  <  ) )
98 breq2 4657 . . . . . . . . . 10  |-  ( x  =  sup ( { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) } ,  RR ,  `'  <  )  ->  ( ( abs `  ( y  -  B
) )  <  x  <->  ( abs `  ( y  -  B ) )  <  sup ( { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  (
b  -  B ) ) } ,  RR ,  `'  <  ) ) )
9998notbid 308 . . . . . . . . 9  |-  ( x  =  sup ( { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) } ,  RR ,  `'  <  )  ->  ( -.  ( abs `  ( y  -  B ) )  < 
x  <->  -.  ( abs `  ( y  -  B
) )  <  sup ( { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) } ,  RR ,  `'  <  ) ) )
10099ralbidv 2986 . . . . . . . 8  |-  ( x  =  sup ( { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) } ,  RR ,  `'  <  )  ->  ( A. y  e.  A  -.  ( abs `  ( y  -  B ) )  < 
x  <->  A. y  e.  A  -.  ( abs `  (
y  -  B ) )  <  sup ( { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) } ,  RR ,  `'  <  ) ) )
101100rspcev 3309 . . . . . . 7  |-  ( ( sup ( { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  (
b  -  B ) ) } ,  RR ,  `'  <  )  e.  RR+  /\  A. y  e.  A  -.  ( abs `  ( y  -  B
) )  <  sup ( { a  e.  RR  |  E. b  e.  A  a  =  ( abs `  ( b  -  B
) ) } ,  RR ,  `'  <  ) )  ->  E. x  e.  RR+  A. y  e.  A  -.  ( abs `  ( y  -  B
) )  <  x
)
10263, 97, 101syl2anc 693 . . . . . 6  |-  ( ( ( ( A  C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  A  e.  Fin )  ->  E. x  e.  RR+  A. y  e.  A  -.  ( abs `  ( y  -  B ) )  <  x )
103 ralnex 2992 . . . . . . . 8  |-  ( A. y  e.  A  -.  ( abs `  ( y  -  B ) )  <  x  <->  -.  E. y  e.  A  ( abs `  ( y  -  B
) )  <  x
)
104103rexbii 3041 . . . . . . 7  |-  ( E. x  e.  RR+  A. y  e.  A  -.  ( abs `  ( y  -  B ) )  < 
x  <->  E. x  e.  RR+  -. 
E. y  e.  A  ( abs `  ( y  -  B ) )  <  x )
105 rexnal 2995 . . . . . . 7  |-  ( E. x  e.  RR+  -.  E. y  e.  A  ( abs `  ( y  -  B ) )  < 
x  <->  -.  A. x  e.  RR+  E. y  e.  A  ( abs `  (
y  -  B ) )  <  x )
106104, 105bitri 264 . . . . . 6  |-  ( E. x  e.  RR+  A. y  e.  A  -.  ( abs `  ( y  -  B ) )  < 
x  <->  -.  A. x  e.  RR+  E. y  e.  A  ( abs `  (
y  -  B ) )  <  x )
107102, 106sylib 208 . . . . 5  |-  ( ( ( ( A  C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  /\  A  e.  Fin )  ->  -.  A. x  e.  RR+  E. y  e.  A  ( abs `  ( y  -  B ) )  <  x )
108107ex 450 . . . 4  |-  ( ( ( A  C_  RR  /\  B  e.  RR )  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  -> 
( A  e.  Fin  ->  -.  A. x  e.  RR+  E. y  e.  A  ( abs `  ( y  -  B ) )  <  x ) )
1091083impa 1259 . . 3  |-  ( ( A  C_  RR  /\  B  e.  RR  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  -> 
( A  e.  Fin  ->  -.  A. x  e.  RR+  E. y  e.  A  ( abs `  ( y  -  B ) )  <  x ) )
110109con2d 129 . 2  |-  ( ( A  C_  RR  /\  B  e.  RR  /\  ( A  =/=  (/)  /\  -.  B  e.  A ) )  -> 
( A. x  e.  RR+  E. y  e.  A  ( abs `  ( y  -  B ) )  <  x  ->  -.  A  e.  Fin )
)
111110imp 445 1  |-  ( ( ( A  C_  RR  /\  B  e.  RR  /\  ( A  =/=  (/)  /\  -.  B  e.  A )
)  /\  A. x  e.  RR+  E. y  e.  A  ( abs `  (
y  -  B ) )  <  x )  ->  -.  A  e.  Fin )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483   E.wex 1704    e. wcel 1990   {cab 2608    =/= wne 2794   A.wral 2912   E.wrex 2913   {crab 2916    C_ wss 3574   (/)c0 3915   class class class wbr 4653    Or wor 5034   `'ccnv 5113   ` cfv 5888  (class class class)co 6650   Fincfn 7955   supcsup 8346  infcinf 8347   CCcc 9934   RRcr 9935   0cc0 9936    < clt 10074    <_ cle 10075    - cmin 10266   RR+crp 11832   abscabs 13974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976
This theorem is referenced by:  rencldnfi  37385
  Copyright terms: Public domain W3C validator