MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infiso Structured version   Visualization version   Unicode version

Theorem infiso 8413
Description: Image of an infimum under an isomorphism. (Contributed by AV, 4-Sep-2020.)
Hypotheses
Ref Expression
infiso.1  |-  ( ph  ->  F  Isom  R ,  S  ( A ,  B ) )
infiso.2  |-  ( ph  ->  C  C_  A )
infiso.3  |-  ( ph  ->  E. x  e.  A  ( A. y  e.  C  -.  y R x  /\  A. y  e.  A  ( x R y  ->  E. z  e.  C  z R y ) ) )
infiso.4  |-  ( ph  ->  R  Or  A )
Assertion
Ref Expression
infiso  |-  ( ph  -> inf ( ( F " C ) ,  B ,  S )  =  ( F ` inf ( C ,  A ,  R ) ) )
Distinct variable groups:    x, A, y, z    x, B, y, z    x, C, y, z    x, F, y, z    x, R, y, z    x, S, y, z    ph, x, y, z

Proof of Theorem infiso
StepHypRef Expression
1 infiso.1 . . . 4  |-  ( ph  ->  F  Isom  R ,  S  ( A ,  B ) )
2 isocnv2 6581 . . . 4  |-  ( F 
Isom  R ,  S  ( A ,  B )  <-> 
F  Isom  `' R ,  `' S ( A ,  B ) )
31, 2sylib 208 . . 3  |-  ( ph  ->  F  Isom  `' R ,  `' S ( A ,  B ) )
4 infiso.2 . . 3  |-  ( ph  ->  C  C_  A )
5 infiso.4 . . . 4  |-  ( ph  ->  R  Or  A )
6 infiso.3 . . . 4  |-  ( ph  ->  E. x  e.  A  ( A. y  e.  C  -.  y R x  /\  A. y  e.  A  ( x R y  ->  E. z  e.  C  z R y ) ) )
75, 6infcllem 8393 . . 3  |-  ( ph  ->  E. x  e.  A  ( A. y  e.  C  -.  x `' R y  /\  A. y  e.  A  ( y `' R x  ->  E. z  e.  C  y `' R z ) ) )
8 cnvso 5674 . . . 4  |-  ( R  Or  A  <->  `' R  Or  A )
95, 8sylib 208 . . 3  |-  ( ph  ->  `' R  Or  A
)
103, 4, 7, 9supiso 8381 . 2  |-  ( ph  ->  sup ( ( F
" C ) ,  B ,  `' S
)  =  ( F `
 sup ( C ,  A ,  `' R ) ) )
11 df-inf 8349 . 2  |- inf ( ( F " C ) ,  B ,  S
)  =  sup (
( F " C
) ,  B ,  `' S )
12 df-inf 8349 . . 3  |- inf ( C ,  A ,  R
)  =  sup ( C ,  A ,  `' R )
1312fveq2i 6194 . 2  |-  ( F `
inf ( C ,  A ,  R )
)  =  ( F `
 sup ( C ,  A ,  `' R ) )
1410, 11, 133eqtr4g 2681 1  |-  ( ph  -> inf ( ( F " C ) ,  B ,  S )  =  ( F ` inf ( C ,  A ,  R ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    = wceq 1483   A.wral 2912   E.wrex 2913    C_ wss 3574   class class class wbr 4653    Or wor 5034   `'ccnv 5113   "cima 5117   ` cfv 5888    Isom wiso 5889   supcsup 8346  infcinf 8347
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-sup 8348  df-inf 8349
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator