MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infglb Structured version   Visualization version   Unicode version

Theorem infglb 8396
Description: An infimum is the greatest lower bound. See also infcl 8394 and inflb 8395. (Contributed by AV, 3-Sep-2020.)
Hypotheses
Ref Expression
infcl.1  |-  ( ph  ->  R  Or  A )
infcl.2  |-  ( ph  ->  E. x  e.  A  ( A. y  e.  B  -.  y R x  /\  A. y  e.  A  ( x R y  ->  E. z  e.  B  z R y ) ) )
Assertion
Ref Expression
infglb  |-  ( ph  ->  ( ( C  e.  A  /\ inf ( B ,  A ,  R ) R C )  ->  E. z  e.  B  z R C ) )
Distinct variable groups:    x, A, y, z    x, B, y, z    x, R, y, z    z, C    ph, z
Allowed substitution hints:    ph( x, y)    C( x, y)

Proof of Theorem infglb
StepHypRef Expression
1 df-inf 8349 . . . . 5  |- inf ( B ,  A ,  R
)  =  sup ( B ,  A ,  `' R )
21breq1i 4660 . . . 4  |-  (inf ( B ,  A ,  R ) R C  <->  sup ( B ,  A ,  `' R ) R C )
3 simpr 477 . . . . 5  |-  ( (
ph  /\  C  e.  A )  ->  C  e.  A )
4 infcl.1 . . . . . . . 8  |-  ( ph  ->  R  Or  A )
5 cnvso 5674 . . . . . . . 8  |-  ( R  Or  A  <->  `' R  Or  A )
64, 5sylib 208 . . . . . . 7  |-  ( ph  ->  `' R  Or  A
)
7 infcl.2 . . . . . . . 8  |-  ( ph  ->  E. x  e.  A  ( A. y  e.  B  -.  y R x  /\  A. y  e.  A  ( x R y  ->  E. z  e.  B  z R y ) ) )
84, 7infcllem 8393 . . . . . . 7  |-  ( ph  ->  E. x  e.  A  ( A. y  e.  B  -.  x `' R y  /\  A. y  e.  A  ( y `' R x  ->  E. z  e.  B  y `' R z ) ) )
96, 8supcl 8364 . . . . . 6  |-  ( ph  ->  sup ( B ,  A ,  `' R
)  e.  A )
109adantr 481 . . . . 5  |-  ( (
ph  /\  C  e.  A )  ->  sup ( B ,  A ,  `' R )  e.  A
)
11 brcnvg 5303 . . . . . 6  |-  ( ( C  e.  A  /\  sup ( B ,  A ,  `' R )  e.  A
)  ->  ( C `' R sup ( B ,  A ,  `' R )  <->  sup ( B ,  A ,  `' R ) R C ) )
1211bicomd 213 . . . . 5  |-  ( ( C  e.  A  /\  sup ( B ,  A ,  `' R )  e.  A
)  ->  ( sup ( B ,  A ,  `' R ) R C  <-> 
C `' R sup ( B ,  A ,  `' R ) ) )
133, 10, 12syl2anc 693 . . . 4  |-  ( (
ph  /\  C  e.  A )  ->  ( sup ( B ,  A ,  `' R ) R C  <-> 
C `' R sup ( B ,  A ,  `' R ) ) )
142, 13syl5bb 272 . . 3  |-  ( (
ph  /\  C  e.  A )  ->  (inf ( B ,  A ,  R ) R C  <-> 
C `' R sup ( B ,  A ,  `' R ) ) )
156, 8suplub 8366 . . . . 5  |-  ( ph  ->  ( ( C  e.  A  /\  C `' R sup ( B ,  A ,  `' R
) )  ->  E. z  e.  B  C `' R z ) )
1615expdimp 453 . . . 4  |-  ( (
ph  /\  C  e.  A )  ->  ( C `' R sup ( B ,  A ,  `' R )  ->  E. z  e.  B  C `' R z ) )
17 vex 3203 . . . . . 6  |-  z  e. 
_V
18 brcnvg 5303 . . . . . 6  |-  ( ( C  e.  A  /\  z  e.  _V )  ->  ( C `' R
z  <->  z R C ) )
193, 17, 18sylancl 694 . . . . 5  |-  ( (
ph  /\  C  e.  A )  ->  ( C `' R z  <->  z R C ) )
2019rexbidv 3052 . . . 4  |-  ( (
ph  /\  C  e.  A )  ->  ( E. z  e.  B  C `' R z  <->  E. z  e.  B  z R C ) )
2116, 20sylibd 229 . . 3  |-  ( (
ph  /\  C  e.  A )  ->  ( C `' R sup ( B ,  A ,  `' R )  ->  E. z  e.  B  z R C ) )
2214, 21sylbid 230 . 2  |-  ( (
ph  /\  C  e.  A )  ->  (inf ( B ,  A ,  R ) R C  ->  E. z  e.  B  z R C ) )
2322expimpd 629 1  |-  ( ph  ->  ( ( C  e.  A  /\ inf ( B ,  A ,  R ) R C )  ->  E. z  e.  B  z R C ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    e. wcel 1990   A.wral 2912   E.wrex 2913   _Vcvv 3200   class class class wbr 4653    Or wor 5034   `'ccnv 5113   supcsup 8346  infcinf 8347
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-po 5035  df-so 5036  df-cnv 5122  df-iota 5851  df-riota 6611  df-sup 8348  df-inf 8349
This theorem is referenced by:  infnlb  8398  omssubaddlem  30361  omssubadd  30362  gtinf  32313  infxrunb2  39584
  Copyright terms: Public domain W3C validator