MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infrenegsup Structured version   Visualization version   Unicode version

Theorem infrenegsup 11006
Description: The infimum of a set of reals  A is the negative of the supremum of the negatives of its elements. The antecedent ensures that  A is nonempty and has a lower bound. (Contributed by NM, 14-Jun-2005.) (Revised by AV, 4-Sep-2020.)
Assertion
Ref Expression
infrenegsup  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  x  <_  y
)  -> inf ( A ,  RR ,  <  )  =  -u sup ( { z  e.  RR  |  -u z  e.  A } ,  RR ,  <  )
)
Distinct variable group:    x, A, y, z

Proof of Theorem infrenegsup
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 infrecl 11005 . . . 4  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  x  <_  y
)  -> inf ( A ,  RR ,  <  )  e.  RR )
21recnd 10068 . . 3  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  x  <_  y
)  -> inf ( A ,  RR ,  <  )  e.  CC )
32negnegd 10383 . 2  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  x  <_  y
)  ->  -u -uinf ( A ,  RR ,  <  )  = inf ( A ,  RR ,  <  ) )
4 negeq 10273 . . . . . . . . 9  |-  ( w  =  z  ->  -u w  =  -u z )
54cbvmptv 4750 . . . . . . . 8  |-  ( w  e.  RR  |->  -u w
)  =  ( z  e.  RR  |->  -u z
)
65mptpreima 5628 . . . . . . 7  |-  ( `' ( w  e.  RR  |->  -u w ) " A
)  =  { z  e.  RR  |  -u z  e.  A }
7 eqid 2622 . . . . . . . . . 10  |-  ( w  e.  RR  |->  -u w
)  =  ( w  e.  RR  |->  -u w
)
87negiso 11003 . . . . . . . . 9  |-  ( ( w  e.  RR  |->  -u w )  Isom  <  ,  `'  <  ( RR ,  RR )  /\  `' ( w  e.  RR  |->  -u w )  =  ( w  e.  RR  |->  -u w ) )
98simpri 478 . . . . . . . 8  |-  `' ( w  e.  RR  |->  -u w )  =  ( w  e.  RR  |->  -u w )
109imaeq1i 5463 . . . . . . 7  |-  ( `' ( w  e.  RR  |->  -u w ) " A
)  =  ( ( w  e.  RR  |->  -u w ) " A
)
116, 10eqtr3i 2646 . . . . . 6  |-  { z  e.  RR  |  -u z  e.  A }  =  ( ( w  e.  RR  |->  -u w
) " A )
1211supeq1i 8353 . . . . 5  |-  sup ( { z  e.  RR  |  -u z  e.  A } ,  RR ,  <  )  =  sup (
( ( w  e.  RR  |->  -u w ) " A ) ,  RR ,  <  )
138simpli 474 . . . . . . . . 9  |-  ( w  e.  RR  |->  -u w
)  Isom  <  ,  `'  <  ( RR ,  RR )
14 isocnv 6580 . . . . . . . . 9  |-  ( ( w  e.  RR  |->  -u w )  Isom  <  ,  `'  <  ( RR ,  RR )  ->  `' ( w  e.  RR  |->  -u w )  Isom  `'  <  ,  <  ( RR ,  RR ) )
1513, 14ax-mp 5 . . . . . . . 8  |-  `' ( w  e.  RR  |->  -u w )  Isom  `'  <  ,  <  ( RR ,  RR )
16 isoeq1 6567 . . . . . . . . 9  |-  ( `' ( w  e.  RR  |->  -u w )  =  ( w  e.  RR  |->  -u w )  ->  ( `' ( w  e.  RR  |->  -u w )  Isom  `'  <  ,  <  ( RR ,  RR )  <->  ( w  e.  RR  |->  -u w )  Isom  `'  <  ,  <  ( RR ,  RR ) ) )
179, 16ax-mp 5 . . . . . . . 8  |-  ( `' ( w  e.  RR  |->  -u w )  Isom  `'  <  ,  <  ( RR ,  RR )  <->  ( w  e.  RR  |->  -u w )  Isom  `'  <  ,  <  ( RR ,  RR )
)
1815, 17mpbi 220 . . . . . . 7  |-  ( w  e.  RR  |->  -u w
)  Isom  `'  <  ,  <  ( RR ,  RR )
1918a1i 11 . . . . . 6  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  x  <_  y
)  ->  ( w  e.  RR  |->  -u w )  Isom  `'  <  ,  <  ( RR ,  RR )
)
20 simp1 1061 . . . . . 6  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  x  <_  y
)  ->  A  C_  RR )
21 infm3 10982 . . . . . . 7  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  x  <_  y
)  ->  E. x  e.  RR  ( A. y  e.  A  -.  y  <  x  /\  A. y  e.  RR  ( x  < 
y  ->  E. z  e.  A  z  <  y ) ) )
22 vex 3203 . . . . . . . . . . . 12  |-  x  e. 
_V
23 vex 3203 . . . . . . . . . . . 12  |-  y  e. 
_V
2422, 23brcnv 5305 . . . . . . . . . . 11  |-  ( x `'  <  y  <->  y  <  x )
2524notbii 310 . . . . . . . . . 10  |-  ( -.  x `'  <  y  <->  -.  y  <  x )
2625ralbii 2980 . . . . . . . . 9  |-  ( A. y  e.  A  -.  x `'  <  y  <->  A. y  e.  A  -.  y  <  x )
2723, 22brcnv 5305 . . . . . . . . . . 11  |-  ( y `'  <  x  <->  x  <  y )
28 vex 3203 . . . . . . . . . . . . 13  |-  z  e. 
_V
2923, 28brcnv 5305 . . . . . . . . . . . 12  |-  ( y `'  <  z  <->  z  <  y )
3029rexbii 3041 . . . . . . . . . . 11  |-  ( E. z  e.  A  y `'  <  z  <->  E. z  e.  A  z  <  y )
3127, 30imbi12i 340 . . . . . . . . . 10  |-  ( ( y `'  <  x  ->  E. z  e.  A  y `'  <  z )  <-> 
( x  <  y  ->  E. z  e.  A  z  <  y ) )
3231ralbii 2980 . . . . . . . . 9  |-  ( A. y  e.  RR  (
y `'  <  x  ->  E. z  e.  A  y `'  <  z )  <->  A. y  e.  RR  ( x  <  y  ->  E. z  e.  A  z  <  y ) )
3326, 32anbi12i 733 . . . . . . . 8  |-  ( ( A. y  e.  A  -.  x `'  <  y  /\  A. y  e.  RR  ( y `'  <  x  ->  E. z  e.  A  y `'  <  z ) )  <->  ( A. y  e.  A  -.  y  <  x  /\  A. y  e.  RR  ( x  < 
y  ->  E. z  e.  A  z  <  y ) ) )
3433rexbii 3041 . . . . . . 7  |-  ( E. x  e.  RR  ( A. y  e.  A  -.  x `'  <  y  /\  A. y  e.  RR  ( y `'  <  x  ->  E. z  e.  A  y `'  <  z ) )  <->  E. x  e.  RR  ( A. y  e.  A  -.  y  <  x  /\  A. y  e.  RR  (
x  <  y  ->  E. z  e.  A  z  <  y ) ) )
3521, 34sylibr 224 . . . . . 6  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  x  <_  y
)  ->  E. x  e.  RR  ( A. y  e.  A  -.  x `'  <  y  /\  A. y  e.  RR  (
y `'  <  x  ->  E. z  e.  A  y `'  <  z ) ) )
36 gtso 10119 . . . . . . 7  |-  `'  <  Or  RR
3736a1i 11 . . . . . 6  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  x  <_  y
)  ->  `'  <  Or  RR )
3819, 20, 35, 37supiso 8381 . . . . 5  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  x  <_  y
)  ->  sup (
( ( w  e.  RR  |->  -u w ) " A ) ,  RR ,  <  )  =  ( ( w  e.  RR  |->  -u w ) `  sup ( A ,  RR ,  `'  <  ) ) )
3912, 38syl5eq 2668 . . . 4  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  x  <_  y
)  ->  sup ( { z  e.  RR  |  -u z  e.  A } ,  RR ,  <  )  =  ( ( w  e.  RR  |->  -u w ) `  sup ( A ,  RR ,  `'  <  ) ) )
40 df-inf 8349 . . . . . . . 8  |- inf ( A ,  RR ,  <  )  =  sup ( A ,  RR ,  `'  <  )
4140eqcomi 2631 . . . . . . 7  |-  sup ( A ,  RR ,  `'  <  )  = inf ( A ,  RR ,  <  )
4241fveq2i 6194 . . . . . 6  |-  ( ( w  e.  RR  |->  -u w ) `  sup ( A ,  RR ,  `'  <  ) )  =  ( ( w  e.  RR  |->  -u w ) ` inf ( A ,  RR ,  <  ) )
43 negeq 10273 . . . . . . 7  |-  ( w  = inf ( A ,  RR ,  <  )  ->  -u w  =  -uinf ( A ,  RR ,  <  ) )
44 negex 10279 . . . . . . 7  |-  -uinf ( A ,  RR ,  <  )  e.  _V
4543, 7, 44fvmpt 6282 . . . . . 6  |-  (inf ( A ,  RR ,  <  )  e.  RR  ->  ( ( w  e.  RR  |->  -u w ) ` inf ( A ,  RR ,  <  ) )  =  -uinf ( A ,  RR ,  <  ) )
4642, 45syl5eq 2668 . . . . 5  |-  (inf ( A ,  RR ,  <  )  e.  RR  ->  ( ( w  e.  RR  |->  -u w ) `  sup ( A ,  RR ,  `'  <  ) )  = 
-uinf ( A ,  RR ,  <  ) )
471, 46syl 17 . . . 4  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  x  <_  y
)  ->  ( (
w  e.  RR  |->  -u w ) `  sup ( A ,  RR ,  `'  <  ) )  = 
-uinf ( A ,  RR ,  <  ) )
4839, 47eqtr2d 2657 . . 3  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  x  <_  y
)  ->  -uinf ( A ,  RR ,  <  )  =  sup ( { z  e.  RR  |  -u z  e.  A } ,  RR ,  <  )
)
4948negeqd 10275 . 2  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  x  <_  y
)  ->  -u -uinf ( A ,  RR ,  <  )  =  -u sup ( { z  e.  RR  |  -u z  e.  A } ,  RR ,  <  )
)
503, 49eqtr3d 2658 1  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  x  <_  y
)  -> inf ( A ,  RR ,  <  )  =  -u sup ( { z  e.  RR  |  -u z  e.  A } ,  RR ,  <  )
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   {crab 2916    C_ wss 3574   (/)c0 3915   class class class wbr 4653    |-> cmpt 4729    Or wor 5034   `'ccnv 5113   "cima 5117   ` cfv 5888    Isom wiso 5889   supcsup 8346  infcinf 8347   RRcr 9935    < clt 10074    <_ cle 10075   -ucneg 10267
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269
This theorem is referenced by:  supminf  11775  mbfinf  23432  infnsuprnmpt  39465  supminfxr  39694
  Copyright terms: Public domain W3C validator