MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephiso Structured version   Visualization version   Unicode version

Theorem alephiso 8921
Description: Aleph is an order isomorphism of the class of ordinal numbers onto the class of infinite cardinals. Definition 10.27 of [TakeutiZaring] p. 90. (Contributed by NM, 3-Aug-2004.)
Assertion
Ref Expression
alephiso  |-  aleph  Isom  _E  ,  _E  ( On ,  {
x  |  ( om  C_  x  /\  ( card `  x )  =  x ) } )

Proof of Theorem alephiso
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 alephfnon 8888 . . . . . 6  |-  aleph  Fn  On
2 isinfcard 8915 . . . . . . . 8  |-  ( ( om  C_  x  /\  ( card `  x )  =  x )  <->  x  e.  ran  aleph )
32bicomi 214 . . . . . . 7  |-  ( x  e.  ran  aleph  <->  ( om  C_  x  /\  ( card `  x )  =  x ) )
43abbi2i 2738 . . . . . 6  |-  ran  aleph  =  {
x  |  ( om  C_  x  /\  ( card `  x )  =  x ) }
5 df-fo 5894 . . . . . 6  |-  ( aleph : On -onto-> { x  |  ( om  C_  x  /\  ( card `  x )  =  x ) }  <->  ( aleph  Fn  On  /\  ran  aleph  =  {
x  |  ( om  C_  x  /\  ( card `  x )  =  x ) } ) )
61, 4, 5mpbir2an 955 . . . . 5  |-  aleph : On -onto-> { x  |  ( om  C_  x  /\  ( card `  x )  =  x ) }
7 fof 6115 . . . . 5  |-  ( aleph : On -onto-> { x  |  ( om  C_  x  /\  ( card `  x )  =  x ) }  ->  aleph : On --> { x  |  ( om  C_  x  /\  ( card `  x
)  =  x ) } )
86, 7ax-mp 5 . . . 4  |-  aleph : On --> { x  |  ( om  C_  x  /\  ( card `  x )  =  x ) }
9 aleph11 8907 . . . . . 6  |-  ( ( y  e.  On  /\  z  e.  On )  ->  ( ( aleph `  y
)  =  ( aleph `  z )  <->  y  =  z ) )
109biimpd 219 . . . . 5  |-  ( ( y  e.  On  /\  z  e.  On )  ->  ( ( aleph `  y
)  =  ( aleph `  z )  ->  y  =  z ) )
1110rgen2a 2977 . . . 4  |-  A. y  e.  On  A. z  e.  On  ( ( aleph `  y )  =  (
aleph `  z )  -> 
y  =  z )
12 dff13 6512 . . . 4  |-  ( aleph : On -1-1-> { x  |  ( om  C_  x  /\  ( card `  x )  =  x ) }  <->  ( aleph : On --> { x  |  ( om  C_  x  /\  ( card `  x
)  =  x ) }  /\  A. y  e.  On  A. z  e.  On  ( ( aleph `  y )  =  (
aleph `  z )  -> 
y  =  z ) ) )
138, 11, 12mpbir2an 955 . . 3  |-  aleph : On -1-1-> { x  |  ( om  C_  x  /\  ( card `  x )  =  x ) }
14 df-f1o 5895 . . 3  |-  ( aleph : On -1-1-onto-> { x  |  ( om  C_  x  /\  ( card `  x )  =  x ) }  <->  ( aleph : On -1-1-> { x  |  ( om  C_  x  /\  ( card `  x )  =  x ) }  /\  aleph : On -onto-> { x  |  ( om  C_  x  /\  ( card `  x )  =  x ) } ) )
1513, 6, 14mpbir2an 955 . 2  |-  aleph : On -1-1-onto-> {
x  |  ( om  C_  x  /\  ( card `  x )  =  x ) }
16 alephord2 8899 . . . 4  |-  ( ( y  e.  On  /\  z  e.  On )  ->  ( y  e.  z  <-> 
( aleph `  y )  e.  ( aleph `  z )
) )
17 epel 5032 . . . 4  |-  ( y  _E  z  <->  y  e.  z )
18 fvex 6201 . . . . 5  |-  ( aleph `  z )  e.  _V
1918epelc 5031 . . . 4  |-  ( (
aleph `  y )  _E  ( aleph `  z )  <->  (
aleph `  y )  e.  ( aleph `  z )
)
2016, 17, 193bitr4g 303 . . 3  |-  ( ( y  e.  On  /\  z  e.  On )  ->  ( y  _E  z  <->  (
aleph `  y )  _E  ( aleph `  z )
) )
2120rgen2a 2977 . 2  |-  A. y  e.  On  A. z  e.  On  ( y  _E  z  <->  ( aleph `  y
)  _E  ( aleph `  z ) )
22 df-isom 5897 . 2  |-  ( aleph  Isom 
_E  ,  _E  ( On ,  { x  |  ( om  C_  x  /\  ( card `  x
)  =  x ) } )  <->  ( aleph : On -1-1-onto-> { x  |  ( om  C_  x  /\  ( card `  x )  =  x ) }  /\  A. y  e.  On  A. z  e.  On  (
y  _E  z  <->  ( aleph `  y )  _E  ( aleph `  z ) ) ) )
2315, 21, 22mpbir2an 955 1  |-  aleph  Isom  _E  ,  _E  ( On ,  {
x  |  ( om  C_  x  /\  ( card `  x )  =  x ) } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   {cab 2608   A.wral 2912    C_ wss 3574   class class class wbr 4653    _E cep 5028   ran crn 5115   Oncon0 5723    Fn wfn 5883   -->wf 5884   -1-1->wf1 5885   -onto->wfo 5886   -1-1-onto->wf1o 5887   ` cfv 5888    Isom wiso 5889   omcom 7065   cardccrd 8761   alephcale 8762
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-oi 8415  df-har 8463  df-card 8765  df-aleph 8766
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator