Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dgraaub Structured version   Visualization version   Unicode version

Theorem dgraaub 37718
Description: Upper bound on degree of an algebraic number. (Contributed by Stefan O'Rear, 25-Nov-2014.) (Proof shortened by AV, 29-Sep-2020.)
Assertion
Ref Expression
dgraaub  |-  ( ( ( P  e.  (Poly `  QQ )  /\  P  =/=  0p )  /\  ( A  e.  CC  /\  ( P `  A
)  =  0 ) )  ->  (degAA `  A
)  <_  (deg `  P
) )

Proof of Theorem dgraaub
Dummy variables  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simprl 794 . . . 4  |-  ( ( ( P  e.  (Poly `  QQ )  /\  P  =/=  0p )  /\  ( A  e.  CC  /\  ( P `  A
)  =  0 ) )  ->  A  e.  CC )
2 eldifsn 4317 . . . . . . 7  |-  ( P  e.  ( (Poly `  QQ )  \  { 0p } )  <->  ( P  e.  (Poly `  QQ )  /\  P  =/=  0p ) )
32biimpri 218 . . . . . 6  |-  ( ( P  e.  (Poly `  QQ )  /\  P  =/=  0p )  ->  P  e.  ( (Poly `  QQ )  \  {
0p } ) )
43adantr 481 . . . . 5  |-  ( ( ( P  e.  (Poly `  QQ )  /\  P  =/=  0p )  /\  ( A  e.  CC  /\  ( P `  A
)  =  0 ) )  ->  P  e.  ( (Poly `  QQ )  \  { 0p }
) )
5 simprr 796 . . . . 5  |-  ( ( ( P  e.  (Poly `  QQ )  /\  P  =/=  0p )  /\  ( A  e.  CC  /\  ( P `  A
)  =  0 ) )  ->  ( P `  A )  =  0 )
6 fveq1 6190 . . . . . . 7  |-  ( a  =  P  ->  (
a `  A )  =  ( P `  A ) )
76eqeq1d 2624 . . . . . 6  |-  ( a  =  P  ->  (
( a `  A
)  =  0  <->  ( P `  A )  =  0 ) )
87rspcev 3309 . . . . 5  |-  ( ( P  e.  ( (Poly `  QQ )  \  {
0p } )  /\  ( P `  A )  =  0 )  ->  E. a  e.  ( (Poly `  QQ )  \  { 0p } ) ( a `
 A )  =  0 )
94, 5, 8syl2anc 693 . . . 4  |-  ( ( ( P  e.  (Poly `  QQ )  /\  P  =/=  0p )  /\  ( A  e.  CC  /\  ( P `  A
)  =  0 ) )  ->  E. a  e.  ( (Poly `  QQ )  \  { 0p } ) ( a `
 A )  =  0 )
10 elqaa 24077 . . . 4  |-  ( A  e.  AA  <->  ( A  e.  CC  /\  E. a  e.  ( (Poly `  QQ )  \  { 0p } ) ( a `
 A )  =  0 ) )
111, 9, 10sylanbrc 698 . . 3  |-  ( ( ( P  e.  (Poly `  QQ )  /\  P  =/=  0p )  /\  ( A  e.  CC  /\  ( P `  A
)  =  0 ) )  ->  A  e.  AA )
12 dgraaval 37714 . . 3  |-  ( A  e.  AA  ->  (degAA `  A )  = inf ( { a  e.  NN  |  E. b  e.  ( (Poly `  QQ )  \  { 0p }
) ( (deg `  b )  =  a  /\  ( b `  A )  =  0 ) } ,  RR ,  <  ) )
1311, 12syl 17 . 2  |-  ( ( ( P  e.  (Poly `  QQ )  /\  P  =/=  0p )  /\  ( A  e.  CC  /\  ( P `  A
)  =  0 ) )  ->  (degAA `  A
)  = inf ( { a  e.  NN  |  E. b  e.  (
(Poly `  QQ )  \  { 0p }
) ( (deg `  b )  =  a  /\  ( b `  A )  =  0 ) } ,  RR ,  <  ) )
14 ssrab2 3687 . . . 4  |-  { a  e.  NN  |  E. b  e.  ( (Poly `  QQ )  \  {
0p } ) ( (deg `  b
)  =  a  /\  ( b `  A
)  =  0 ) }  C_  NN
15 nnuz 11723 . . . 4  |-  NN  =  ( ZZ>= `  1 )
1614, 15sseqtri 3637 . . 3  |-  { a  e.  NN  |  E. b  e.  ( (Poly `  QQ )  \  {
0p } ) ( (deg `  b
)  =  a  /\  ( b `  A
)  =  0 ) }  C_  ( ZZ>= ` 
1 )
17 dgrnznn 24003 . . . 4  |-  ( ( ( P  e.  (Poly `  QQ )  /\  P  =/=  0p )  /\  ( A  e.  CC  /\  ( P `  A
)  =  0 ) )  ->  (deg `  P
)  e.  NN )
18 eqid 2622 . . . . . 6  |-  (deg `  P )  =  (deg
`  P )
195, 18jctil 560 . . . . 5  |-  ( ( ( P  e.  (Poly `  QQ )  /\  P  =/=  0p )  /\  ( A  e.  CC  /\  ( P `  A
)  =  0 ) )  ->  ( (deg `  P )  =  (deg
`  P )  /\  ( P `  A )  =  0 ) )
20 fveq2 6191 . . . . . . . 8  |-  ( b  =  P  ->  (deg `  b )  =  (deg
`  P ) )
2120eqeq1d 2624 . . . . . . 7  |-  ( b  =  P  ->  (
(deg `  b )  =  (deg `  P )  <->  (deg
`  P )  =  (deg `  P )
) )
22 fveq1 6190 . . . . . . . 8  |-  ( b  =  P  ->  (
b `  A )  =  ( P `  A ) )
2322eqeq1d 2624 . . . . . . 7  |-  ( b  =  P  ->  (
( b `  A
)  =  0  <->  ( P `  A )  =  0 ) )
2421, 23anbi12d 747 . . . . . 6  |-  ( b  =  P  ->  (
( (deg `  b
)  =  (deg `  P )  /\  (
b `  A )  =  0 )  <->  ( (deg `  P )  =  (deg
`  P )  /\  ( P `  A )  =  0 ) ) )
2524rspcev 3309 . . . . 5  |-  ( ( P  e.  ( (Poly `  QQ )  \  {
0p } )  /\  ( (deg `  P )  =  (deg
`  P )  /\  ( P `  A )  =  0 ) )  ->  E. b  e.  ( (Poly `  QQ )  \  { 0p }
) ( (deg `  b )  =  (deg
`  P )  /\  ( b `  A
)  =  0 ) )
264, 19, 25syl2anc 693 . . . 4  |-  ( ( ( P  e.  (Poly `  QQ )  /\  P  =/=  0p )  /\  ( A  e.  CC  /\  ( P `  A
)  =  0 ) )  ->  E. b  e.  ( (Poly `  QQ )  \  { 0p } ) ( (deg
`  b )  =  (deg `  P )  /\  ( b `  A
)  =  0 ) )
27 eqeq2 2633 . . . . . . 7  |-  ( a  =  (deg `  P
)  ->  ( (deg `  b )  =  a  <-> 
(deg `  b )  =  (deg `  P )
) )
2827anbi1d 741 . . . . . 6  |-  ( a  =  (deg `  P
)  ->  ( (
(deg `  b )  =  a  /\  (
b `  A )  =  0 )  <->  ( (deg `  b )  =  (deg
`  P )  /\  ( b `  A
)  =  0 ) ) )
2928rexbidv 3052 . . . . 5  |-  ( a  =  (deg `  P
)  ->  ( E. b  e.  ( (Poly `  QQ )  \  {
0p } ) ( (deg `  b
)  =  a  /\  ( b `  A
)  =  0 )  <->  E. b  e.  (
(Poly `  QQ )  \  { 0p }
) ( (deg `  b )  =  (deg
`  P )  /\  ( b `  A
)  =  0 ) ) )
3029elrab 3363 . . . 4  |-  ( (deg
`  P )  e. 
{ a  e.  NN  |  E. b  e.  ( (Poly `  QQ )  \  { 0p }
) ( (deg `  b )  =  a  /\  ( b `  A )  =  0 ) }  <->  ( (deg `  P )  e.  NN  /\ 
E. b  e.  ( (Poly `  QQ )  \  { 0p }
) ( (deg `  b )  =  (deg
`  P )  /\  ( b `  A
)  =  0 ) ) )
3117, 26, 30sylanbrc 698 . . 3  |-  ( ( ( P  e.  (Poly `  QQ )  /\  P  =/=  0p )  /\  ( A  e.  CC  /\  ( P `  A
)  =  0 ) )  ->  (deg `  P
)  e.  { a  e.  NN  |  E. b  e.  ( (Poly `  QQ )  \  {
0p } ) ( (deg `  b
)  =  a  /\  ( b `  A
)  =  0 ) } )
32 infssuzle 11771 . . 3  |-  ( ( { a  e.  NN  |  E. b  e.  ( (Poly `  QQ )  \  { 0p }
) ( (deg `  b )  =  a  /\  ( b `  A )  =  0 ) }  C_  ( ZZ>=
`  1 )  /\  (deg `  P )  e. 
{ a  e.  NN  |  E. b  e.  ( (Poly `  QQ )  \  { 0p }
) ( (deg `  b )  =  a  /\  ( b `  A )  =  0 ) } )  -> inf ( { a  e.  NN  |  E. b  e.  ( (Poly `  QQ )  \  { 0p }
) ( (deg `  b )  =  a  /\  ( b `  A )  =  0 ) } ,  RR ,  <  )  <_  (deg `  P ) )
3316, 31, 32sylancr 695 . 2  |-  ( ( ( P  e.  (Poly `  QQ )  /\  P  =/=  0p )  /\  ( A  e.  CC  /\  ( P `  A
)  =  0 ) )  -> inf ( {
a  e.  NN  |  E. b  e.  (
(Poly `  QQ )  \  { 0p }
) ( (deg `  b )  =  a  /\  ( b `  A )  =  0 ) } ,  RR ,  <  )  <_  (deg `  P ) )
3413, 33eqbrtrd 4675 1  |-  ( ( ( P  e.  (Poly `  QQ )  /\  P  =/=  0p )  /\  ( A  e.  CC  /\  ( P `  A
)  =  0 ) )  ->  (degAA `  A
)  <_  (deg `  P
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   E.wrex 2913   {crab 2916    \ cdif 3571    C_ wss 3574   {csn 4177   class class class wbr 4653   ` cfv 5888  infcinf 8347   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    < clt 10074    <_ cle 10075   NNcn 11020   ZZ>=cuz 11687   QQcq 11788   0pc0p 23436  Polycply 23940  degcdgr 23943   AAcaa 24069  degAAcdgraa 37710
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-rlim 14220  df-sum 14417  df-0p 23437  df-ply 23944  df-coe 23946  df-dgr 23947  df-aa 24070  df-dgraa 37712
This theorem is referenced by:  dgraa0p  37719
  Copyright terms: Public domain W3C validator