Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  doca3N Structured version   Visualization version   Unicode version

Theorem doca3N 36416
Description: Double orthocomplement of partial isomorphism A. (Contributed by NM, 17-Jan-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
doca2.h  |-  H  =  ( LHyp `  K
)
doca2.i  |-  I  =  ( ( DIsoA `  K
) `  W )
doca2.n  |-  ._|_  =  ( ( ocA `  K
) `  W )
Assertion
Ref Expression
doca3N  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  ran  I )  ->  (  ._|_  `  (  ._|_  `  X
) )  =  X )

Proof of Theorem doca3N
StepHypRef Expression
1 doca2.h . . . 4  |-  H  =  ( LHyp `  K
)
2 doca2.i . . . 4  |-  I  =  ( ( DIsoA `  K
) `  W )
31, 2diacnvclN 36340 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  ran  I )  ->  ( `' I `  X )  e.  dom  I )
4 doca2.n . . . 4  |-  ._|_  =  ( ( ocA `  K
) `  W )
51, 2, 4doca2N 36415 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( `' I `  X )  e.  dom  I )  ->  (  ._|_  `  (  ._|_  `  (
I `  ( `' I `  X )
) ) )  =  ( I `  ( `' I `  X ) ) )
63, 5syldan 487 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  ran  I )  ->  (  ._|_  `  (  ._|_  `  (
I `  ( `' I `  X )
) ) )  =  ( I `  ( `' I `  X ) ) )
71, 2diaf11N 36338 . . . . 5  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  I : dom  I -1-1-onto-> ran  I )
8 f1ocnvfv2 6533 . . . . 5  |-  ( ( I : dom  I -1-1-onto-> ran  I  /\  X  e.  ran  I )  ->  (
I `  ( `' I `  X )
)  =  X )
97, 8sylan 488 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  ran  I )  ->  (
I `  ( `' I `  X )
)  =  X )
109fveq2d 6195 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  ran  I )  ->  (  ._|_  `  ( I `  ( `' I `  X ) ) )  =  ( 
._|_  `  X ) )
1110fveq2d 6195 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  ran  I )  ->  (  ._|_  `  (  ._|_  `  (
I `  ( `' I `  X )
) ) )  =  (  ._|_  `  (  ._|_  `  X ) ) )
126, 11, 93eqtr3d 2664 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  ran  I )  ->  (  ._|_  `  (  ._|_  `  X
) )  =  X )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   `'ccnv 5113   dom cdm 5114   ran crn 5115   -1-1-onto->wf1o 5887   ` cfv 5888   HLchlt 34637   LHypclh 35270   DIsoAcdia 36317   ocAcocaN 36408
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-riotaBAD 34239
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-undef 7399  df-map 7859  df-preset 16928  df-poset 16946  df-plt 16958  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-p0 17039  df-p1 17040  df-lat 17046  df-clat 17108  df-oposet 34463  df-cmtN 34464  df-ol 34465  df-oml 34466  df-covers 34553  df-ats 34554  df-atl 34585  df-cvlat 34609  df-hlat 34638  df-llines 34784  df-lplanes 34785  df-lvols 34786  df-lines 34787  df-psubsp 34789  df-pmap 34790  df-padd 35082  df-lhyp 35274  df-laut 35275  df-ldil 35390  df-ltrn 35391  df-trl 35446  df-disoa 36318  df-docaN 36409
This theorem is referenced by:  diarnN  36418
  Copyright terms: Public domain W3C validator