Proof of Theorem doca2N
Step | Hyp | Ref
| Expression |
1 | | hlol 34648 |
. . . . . . . . . . . . 13
   |
2 | 1 | ad2antrr 762 |
. . . . . . . . . . . 12
       |
3 | | eqid 2622 |
. . . . . . . . . . . . 13
         |
4 | | doca2.h |
. . . . . . . . . . . . 13
     |
5 | | doca2.i |
. . . . . . . . . . . . 13
         |
6 | 3, 4, 5 | diadmclN 36326 |
. . . . . . . . . . . 12
           |
7 | 3, 4 | lhpbase 35284 |
. . . . . . . . . . . . 13
       |
8 | 7 | ad2antlr 763 |
. . . . . . . . . . . 12
           |
9 | | eqid 2622 |
. . . . . . . . . . . . 13
         |
10 | | eqid 2622 |
. . . . . . . . . . . . 13
         |
11 | | eqid 2622 |
. . . . . . . . . . . . 13
         |
12 | 3, 9, 10, 11 | oldmm1 34504 |
. . . . . . . . . . . 12
 
                                                   |
13 | 2, 6, 8, 12 | syl3anc 1326 |
. . . . . . . . . . 11
                                               |
14 | 13 | oveq1d 6665 |
. . . . . . . . . 10
                                                               |
15 | 14 | eqcomd 2628 |
. . . . . . . . 9
                                                               |
16 | 15 | fveq2d 6195 |
. . . . . . . 8
                                                                               |
17 | | hllat 34650 |
. . . . . . . . . . 11
   |
18 | 17 | ad2antrr 762 |
. . . . . . . . . 10
       |
19 | 3, 10 | latmcl 17052 |
. . . . . . . . . 10
 
                       |
20 | 18, 6, 8, 19 | syl3anc 1326 |
. . . . . . . . 9
                   |
21 | 3, 9, 10, 11 | oldmm2 34505 |
. . . . . . . . 9
             
    
                                                          |
22 | 2, 20, 8, 21 | syl3anc 1326 |
. . . . . . . 8
                                                               |
23 | 16, 22 | eqtrd 2656 |
. . . . . . 7
                                                                       |
24 | 23 | oveq1d 6665 |
. . . . . 6
                                                                                                       |
25 | | hlop 34649 |
. . . . . . . . . 10
   |
26 | 25 | ad2antrr 762 |
. . . . . . . . 9
       |
27 | 3, 11 | opoccl 34481 |
. . . . . . . . 9
 
                   |
28 | 26, 8, 27 | syl2anc 693 |
. . . . . . . 8
                   |
29 | 3, 9 | latjass 17095 |
. . . . . . . 8
                                                                                                                           |
30 | 18, 20, 28, 28, 29 | syl13anc 1328 |
. . . . . . 7
                                                                                       |
31 | 3, 9 | latjidm 17074 |
. . . . . . . . 9
                                                 |
32 | 18, 28, 31 | syl2anc 693 |
. . . . . . . 8
                                       |
33 | 32 | oveq2d 6666 |
. . . . . . 7
                                                                       |
34 | 30, 33 | eqtrd 2656 |
. . . . . 6
                                                                       |
35 | 24, 34 | eqtrd 2656 |
. . . . 5
                                                                                       |
36 | 35 | oveq1d 6665 |
. . . 4
                                                                                                       |
37 | | hloml 34644 |
. . . . . 6
   |
38 | 37 | ad2antrr 762 |
. . . . 5
       |
39 | | eqid 2622 |
. . . . . . 7
         |
40 | 3, 39, 10 | latmle2 17077 |
. . . . . 6
 
                         |
41 | 18, 6, 8, 40 | syl3anc 1326 |
. . . . 5
                     |
42 | 3, 39, 9, 10, 11 | omlspjN 34548 |
. . . . 5
              
                   
                                          |
43 | 38, 20, 8, 41, 42 | syl121anc 1331 |
. . . 4
                                               |
44 | 39, 4, 5 | diadmleN 36327 |
. . . . 5
             |
45 | 3, 39, 10 | latleeqm1 17079 |
. . . . . 6
 
               
           |
46 | 18, 6, 8, 45 | syl3anc 1326 |
. . . . 5
           
           |
47 | 44, 46 | mpbid 222 |
. . . 4
               |
48 | 36, 43, 47 | 3eqtrrd 2661 |
. . 3
                                                                       |
49 | 48 | fveq2d 6195 |
. 2
                                                                               |
50 | 3, 11 | opoccl 34481 |
. . . . . . 7
 
                   |
51 | 26, 6, 50 | syl2anc 693 |
. . . . . 6
                   |
52 | 3, 9 | latjcl 17051 |
. . . . . 6
                                                         |
53 | 18, 51, 28, 52 | syl3anc 1326 |
. . . . 5
                                   |
54 | 3, 10 | latmcl 17052 |
. . . . 5
                             
    
                                      |
55 | 18, 53, 8, 54 | syl3anc 1326 |
. . . 4
                                           |
56 | 3, 39, 10 | latmle2 17077 |
. . . . 5
                             
    
                                        |
57 | 18, 53, 8, 56 | syl3anc 1326 |
. . . 4
                                             |
58 | 3, 39, 4, 5 | diaeldm 36325 |
. . . . 5
 
                                 
                                    
                                          |
59 | 58 | adantr 481 |
. . . 4
                                     
                                    
                                          |
60 | 55, 57, 59 | mpbir2and 957 |
. . 3
                                       |
61 | | eqid 2622 |
. . . 4
                 |
62 | | doca2.n |
. . . 4
         |
63 | 9, 10, 11, 4, 61, 5, 62 | diaocN 36414 |
. . 3
                                                                                                        
                                        |
64 | 60, 63 | syldan 487 |
. 2
                                                                        
                                        |
65 | 9, 10, 11, 4, 61, 5, 62 | diaocN 36414 |
. . 3
                                        
        |
66 | 65 | fveq2d 6195 |
. 2
                                                     |
67 | 49, 64, 66 | 3eqtrrd 2661 |
1
                   |