Proof of Theorem sylow1lem5
Step | Hyp | Ref
| Expression |
1 | | sylow1.x |
. . . 4
     |
2 | | sylow1.g |
. . . 4
   |
3 | | sylow1.f |
. . . 4
   |
4 | | sylow1.p |
. . . 4
   |
5 | | sylow1.n |
. . . 4
   |
6 | | sylow1.d |
. . . 4
    
      |
7 | | sylow1lem.a |
. . . 4
    |
8 | | sylow1lem.s |
. . . 4
 
          |
9 | | sylow1lem.m |
. . . 4
        |
10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | sylow1lem2 18014 |
. . 3

    |
11 | | sylow1lem4.b |
. . 3
   |
12 | | sylow1lem4.h |
. . . 4
     |
13 | 1, 12 | gastacl 17742 |
. . 3

   SubGrp    |
14 | 10, 11, 13 | syl2anc 693 |
. 2
 SubGrp    |
15 | | sylow1lem3.1 |
. . . 4
   
    
     |
16 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 15,
11, 12 | sylow1lem4 18016 |
. . 3
    
      |
17 | | sylow1lem5.l |
. . . . . . . 8
                  |
18 | 15, 1 | gaorber 17741 |
. . . . . . . . . . . . . . . 16
 
  |
19 | 10, 18 | syl 17 |
. . . . . . . . . . . . . . 15
   |
20 | | erdm 7752 |
. . . . . . . . . . . . . . 15
  |
21 | 19, 20 | syl 17 |
. . . . . . . . . . . . . 14
   |
22 | 11, 21 | eleqtrrd 2704 |
. . . . . . . . . . . . 13
  |
23 | | ecdmn0 7789 |
. . . . . . . . . . . . 13

    |
24 | 22, 23 | sylib 208 |
. . . . . . . . . . . 12
     |
25 | | pwfi 8261 |
. . . . . . . . . . . . . . . 16

   |
26 | 3, 25 | sylib 208 |
. . . . . . . . . . . . . . 15
    |
27 | | ssrab2 3687 |
. . . . . . . . . . . . . . . 16
             |
28 | 8, 27 | eqsstri 3635 |
. . . . . . . . . . . . . . 15
  |
29 | | ssfi 8180 |
. . . . . . . . . . . . . . 15
  
 
  |
30 | 26, 28, 29 | sylancl 694 |
. . . . . . . . . . . . . 14
   |
31 | 19 | ecss 7788 |
. . . . . . . . . . . . . 14
     |
32 | | ssfi 8180 |
. . . . . . . . . . . . . 14
    
    |
33 | 30, 31, 32 | syl2anc 693 |
. . . . . . . . . . . . 13
     |
34 | | hashnncl 13157 |
. . . . . . . . . . . . 13
        
     |
35 | 33, 34 | syl 17 |
. . . . . . . . . . . 12
      
     |
36 | 24, 35 | mpbird 247 |
. . . . . . . . . . 11
     
  |
37 | 4, 36 | pccld 15555 |
. . . . . . . . . 10
          |
38 | 37 | nn0red 11352 |
. . . . . . . . 9
          |
39 | 5 | nn0red 11352 |
. . . . . . . . 9
   |
40 | 1 | grpbn0 17451 |
. . . . . . . . . . . . 13
   |
41 | 2, 40 | syl 17 |
. . . . . . . . . . . 12
   |
42 | | hashnncl 13157 |
. . . . . . . . . . . . 13
     
   |
43 | 3, 42 | syl 17 |
. . . . . . . . . . . 12
     
   |
44 | 41, 43 | mpbird 247 |
. . . . . . . . . . 11
       |
45 | 4, 44 | pccld 15555 |
. . . . . . . . . 10
         |
46 | 45 | nn0red 11352 |
. . . . . . . . 9
         |
47 | | leaddsub 10504 |
. . . . . . . . 9
         
                     
     

           |
48 | 38, 39, 46, 47 | syl3anc 1326 |
. . . . . . . 8
        
                          |
49 | 17, 48 | mpbird 247 |
. . . . . . 7
                  |
50 | | eqid 2622 |
. . . . . . . . . . 11
 ~QG   ~QG   |
51 | 1, 12, 50, 15 | orbsta2 17747 |
. . . . . . . . . 10
 
 

                  |
52 | 10, 11, 3, 51 | syl21anc 1325 |
. . . . . . . . 9
                  |
53 | 52 | oveq2d 6666 |
. . . . . . . 8
             
        |
54 | 36 | nnzd 11481 |
. . . . . . . . 9
     
  |
55 | 36 | nnne0d 11065 |
. . . . . . . . 9
     
  |
56 | | eqid 2622 |
. . . . . . . . . . . . . 14
         |
57 | 56 | subg0cl 17602 |
. . . . . . . . . . . . 13
 SubGrp 
      |
58 | 14, 57 | syl 17 |
. . . . . . . . . . . 12
       |
59 | | ne0i 3921 |
. . . . . . . . . . . 12
       |
60 | 58, 59 | syl 17 |
. . . . . . . . . . 11
   |
61 | | ssrab2 3687 |
. . . . . . . . . . . . . 14

    |
62 | 12, 61 | eqsstri 3635 |
. . . . . . . . . . . . 13
 |
63 | | ssfi 8180 |
. . . . . . . . . . . . 13
  
  |
64 | 3, 62, 63 | sylancl 694 |
. . . . . . . . . . . 12
   |
65 | | hashnncl 13157 |
. . . . . . . . . . . 12
     
   |
66 | 64, 65 | syl 17 |
. . . . . . . . . . 11
     
   |
67 | 60, 66 | mpbird 247 |
. . . . . . . . . 10
       |
68 | 67 | nnzd 11481 |
. . . . . . . . 9
       |
69 | 67 | nnne0d 11065 |
. . . . . . . . 9
       |
70 | | pcmul 15556 |
. . . . . . . . 9
            
                          
    
          |
71 | 4, 54, 55, 68, 69, 70 | syl122anc 1335 |
. . . . . . . 8
               
    
          |
72 | 53, 71 | eqtrd 2656 |
. . . . . . 7
             
          |
73 | 49, 72 | breqtrd 4679 |
. . . . . 6
                  
        |
74 | 4, 67 | pccld 15555 |
. . . . . . . 8
         |
75 | 74 | nn0red 11352 |
. . . . . . 7
         |
76 | 39, 75, 38 | leadd2d 10622 |
. . . . . 6
       
      
        
           |
77 | 73, 76 | mpbird 247 |
. . . . 5

        |
78 | | pcdvdsb 15573 |
. . . . . 6
                         |
79 | 4, 68, 5, 78 | syl3anc 1326 |
. . . . 5
       
           |
80 | 77, 79 | mpbid 222 |
. . . 4
    
      |
81 | | prmnn 15388 |
. . . . . . . 8

  |
82 | 4, 81 | syl 17 |
. . . . . . 7
   |
83 | 82, 5 | nnexpcld 13030 |
. . . . . 6
       |
84 | 83 | nnzd 11481 |
. . . . 5
       |
85 | | dvdsle 15032 |
. . . . 5
                       
       |
86 | 84, 67, 85 | syl2anc 693 |
. . . 4
             
       |
87 | 80, 86 | mpd 15 |
. . 3
    
      |
88 | | hashcl 13147 |
. . . . . 6
       |
89 | 64, 88 | syl 17 |
. . . . 5
       |
90 | 89 | nn0red 11352 |
. . . 4
       |
91 | 83 | nnred 11035 |
. . . 4
       |
92 | 90, 91 | letri3d 10179 |
. . 3
         
        
            |
93 | 16, 87, 92 | mpbir2and 957 |
. 2
           |
94 | | fveq2 6191 |
. . . 4
           |
95 | 94 | eqeq1d 2624 |
. . 3
         
           |
96 | 95 | rspcev 3309 |
. 2
  SubGrp            SubGrp             |
97 | 14, 93, 96 | syl2anc 693 |
1
  SubGrp             |