MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylow1lem5 Structured version   Visualization version   Unicode version

Theorem sylow1lem5 18017
Description: Lemma for sylow1 18018. Using Lagrange's theorem and the orbit-stabilizer theorem, show that there is a subgroup with size exactly  P ^ N. (Contributed by Mario Carneiro, 16-Jan-2015.)
Hypotheses
Ref Expression
sylow1.x  |-  X  =  ( Base `  G
)
sylow1.g  |-  ( ph  ->  G  e.  Grp )
sylow1.f  |-  ( ph  ->  X  e.  Fin )
sylow1.p  |-  ( ph  ->  P  e.  Prime )
sylow1.n  |-  ( ph  ->  N  e.  NN0 )
sylow1.d  |-  ( ph  ->  ( P ^ N
)  ||  ( # `  X
) )
sylow1lem.a  |-  .+  =  ( +g  `  G )
sylow1lem.s  |-  S  =  { s  e.  ~P X  |  ( # `  s
)  =  ( P ^ N ) }
sylow1lem.m  |-  .(+)  =  ( x  e.  X , 
y  e.  S  |->  ran  ( z  e.  y 
|->  ( x  .+  z
) ) )
sylow1lem3.1  |-  .~  =  { <. x ,  y
>.  |  ( {
x ,  y } 
C_  S  /\  E. g  e.  X  (
g  .(+)  x )  =  y ) }
sylow1lem4.b  |-  ( ph  ->  B  e.  S )
sylow1lem4.h  |-  H  =  { u  e.  X  |  ( u  .(+)  B )  =  B }
sylow1lem5.l  |-  ( ph  ->  ( P  pCnt  ( # `
 [ B ]  .~  ) )  <_  (
( P  pCnt  ( # `
 X ) )  -  N ) )
Assertion
Ref Expression
sylow1lem5  |-  ( ph  ->  E. h  e.  (SubGrp `  G ) ( # `  h )  =  ( P ^ N ) )
Distinct variable groups:    g, s, u, x, y, z, B   
g, h, H, x, y    S, g, u, x, y, z    g, N   
h, s, u, z, N, x, y    g, X, h, s, u, x, y, z    .+ , s, u, x, y, z    z,  .~   
.(+) , g, u, x, y, z    g, G, h, s, u, x, y, z    P, g, h, s, u, x, y, z    ph, u, x, y, z
Allowed substitution hints:    ph( g, h, s)    B( h)    .+ ( g, h)    .(+) (
h, s)    .~ ( x, y, u, g, h, s)    S( h, s)    H( z, u, s)

Proof of Theorem sylow1lem5
StepHypRef Expression
1 sylow1.x . . . 4  |-  X  =  ( Base `  G
)
2 sylow1.g . . . 4  |-  ( ph  ->  G  e.  Grp )
3 sylow1.f . . . 4  |-  ( ph  ->  X  e.  Fin )
4 sylow1.p . . . 4  |-  ( ph  ->  P  e.  Prime )
5 sylow1.n . . . 4  |-  ( ph  ->  N  e.  NN0 )
6 sylow1.d . . . 4  |-  ( ph  ->  ( P ^ N
)  ||  ( # `  X
) )
7 sylow1lem.a . . . 4  |-  .+  =  ( +g  `  G )
8 sylow1lem.s . . . 4  |-  S  =  { s  e.  ~P X  |  ( # `  s
)  =  ( P ^ N ) }
9 sylow1lem.m . . . 4  |-  .(+)  =  ( x  e.  X , 
y  e.  S  |->  ran  ( z  e.  y 
|->  ( x  .+  z
) ) )
101, 2, 3, 4, 5, 6, 7, 8, 9sylow1lem2 18014 . . 3  |-  ( ph  -> 
.(+)  e.  ( G  GrpAct  S ) )
11 sylow1lem4.b . . 3  |-  ( ph  ->  B  e.  S )
12 sylow1lem4.h . . . 4  |-  H  =  { u  e.  X  |  ( u  .(+)  B )  =  B }
131, 12gastacl 17742 . . 3  |-  ( ( 
.(+)  e.  ( G  GrpAct  S )  /\  B  e.  S )  ->  H  e.  (SubGrp `  G )
)
1410, 11, 13syl2anc 693 . 2  |-  ( ph  ->  H  e.  (SubGrp `  G ) )
15 sylow1lem3.1 . . . 4  |-  .~  =  { <. x ,  y
>.  |  ( {
x ,  y } 
C_  S  /\  E. g  e.  X  (
g  .(+)  x )  =  y ) }
161, 2, 3, 4, 5, 6, 7, 8, 9, 15, 11, 12sylow1lem4 18016 . . 3  |-  ( ph  ->  ( # `  H
)  <_  ( P ^ N ) )
17 sylow1lem5.l . . . . . . . 8  |-  ( ph  ->  ( P  pCnt  ( # `
 [ B ]  .~  ) )  <_  (
( P  pCnt  ( # `
 X ) )  -  N ) )
1815, 1gaorber 17741 . . . . . . . . . . . . . . . 16  |-  (  .(+)  e.  ( G  GrpAct  S )  ->  .~  Er  S
)
1910, 18syl 17 . . . . . . . . . . . . . . 15  |-  ( ph  ->  .~  Er  S )
20 erdm 7752 . . . . . . . . . . . . . . 15  |-  (  .~  Er  S  ->  dom  .~  =  S )
2119, 20syl 17 . . . . . . . . . . . . . 14  |-  ( ph  ->  dom  .~  =  S )
2211, 21eleqtrrd 2704 . . . . . . . . . . . . 13  |-  ( ph  ->  B  e.  dom  .~  )
23 ecdmn0 7789 . . . . . . . . . . . . 13  |-  ( B  e.  dom  .~  <->  [ B ]  .~  =/=  (/) )
2422, 23sylib 208 . . . . . . . . . . . 12  |-  ( ph  ->  [ B ]  .~  =/=  (/) )
25 pwfi 8261 . . . . . . . . . . . . . . . 16  |-  ( X  e.  Fin  <->  ~P X  e.  Fin )
263, 25sylib 208 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ~P X  e.  Fin )
27 ssrab2 3687 . . . . . . . . . . . . . . . 16  |-  { s  e.  ~P X  | 
( # `  s )  =  ( P ^ N ) }  C_  ~P X
288, 27eqsstri 3635 . . . . . . . . . . . . . . 15  |-  S  C_  ~P X
29 ssfi 8180 . . . . . . . . . . . . . . 15  |-  ( ( ~P X  e.  Fin  /\  S  C_  ~P X
)  ->  S  e.  Fin )
3026, 28, 29sylancl 694 . . . . . . . . . . . . . 14  |-  ( ph  ->  S  e.  Fin )
3119ecss 7788 . . . . . . . . . . . . . 14  |-  ( ph  ->  [ B ]  .~  C_  S )
32 ssfi 8180 . . . . . . . . . . . . . 14  |-  ( ( S  e.  Fin  /\  [ B ]  .~  C_  S
)  ->  [ B ]  .~  e.  Fin )
3330, 31, 32syl2anc 693 . . . . . . . . . . . . 13  |-  ( ph  ->  [ B ]  .~  e.  Fin )
34 hashnncl 13157 . . . . . . . . . . . . 13  |-  ( [ B ]  .~  e.  Fin  ->  ( ( # `  [ B ]  .~  )  e.  NN  <->  [ B ]  .~  =/=  (/) ) )
3533, 34syl 17 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( # `  [ B ]  .~  )  e.  NN  <->  [ B ]  .~  =/=  (/) ) )
3624, 35mpbird 247 . . . . . . . . . . 11  |-  ( ph  ->  ( # `  [ B ]  .~  )  e.  NN )
374, 36pccld 15555 . . . . . . . . . 10  |-  ( ph  ->  ( P  pCnt  ( # `
 [ B ]  .~  ) )  e.  NN0 )
3837nn0red 11352 . . . . . . . . 9  |-  ( ph  ->  ( P  pCnt  ( # `
 [ B ]  .~  ) )  e.  RR )
395nn0red 11352 . . . . . . . . 9  |-  ( ph  ->  N  e.  RR )
401grpbn0 17451 . . . . . . . . . . . . 13  |-  ( G  e.  Grp  ->  X  =/=  (/) )
412, 40syl 17 . . . . . . . . . . . 12  |-  ( ph  ->  X  =/=  (/) )
42 hashnncl 13157 . . . . . . . . . . . . 13  |-  ( X  e.  Fin  ->  (
( # `  X )  e.  NN  <->  X  =/=  (/) ) )
433, 42syl 17 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( # `  X
)  e.  NN  <->  X  =/=  (/) ) )
4441, 43mpbird 247 . . . . . . . . . . 11  |-  ( ph  ->  ( # `  X
)  e.  NN )
454, 44pccld 15555 . . . . . . . . . 10  |-  ( ph  ->  ( P  pCnt  ( # `
 X ) )  e.  NN0 )
4645nn0red 11352 . . . . . . . . 9  |-  ( ph  ->  ( P  pCnt  ( # `
 X ) )  e.  RR )
47 leaddsub 10504 . . . . . . . . 9  |-  ( ( ( P  pCnt  ( # `
 [ B ]  .~  ) )  e.  RR  /\  N  e.  RR  /\  ( P  pCnt  ( # `  X ) )  e.  RR )  ->  (
( ( P  pCnt  (
# `  [ B ]  .~  ) )  +  N )  <_  ( P  pCnt  ( # `  X
) )  <->  ( P  pCnt  ( # `  [ B ]  .~  )
)  <_  ( ( P  pCnt  ( # `  X
) )  -  N
) ) )
4838, 39, 46, 47syl3anc 1326 . . . . . . . 8  |-  ( ph  ->  ( ( ( P 
pCnt  ( # `  [ B ]  .~  )
)  +  N )  <_  ( P  pCnt  (
# `  X )
)  <->  ( P  pCnt  (
# `  [ B ]  .~  ) )  <_ 
( ( P  pCnt  (
# `  X )
)  -  N ) ) )
4917, 48mpbird 247 . . . . . . 7  |-  ( ph  ->  ( ( P  pCnt  (
# `  [ B ]  .~  ) )  +  N )  <_  ( P  pCnt  ( # `  X
) ) )
50 eqid 2622 . . . . . . . . . . 11  |-  ( G ~QG  H )  =  ( G ~QG  H )
511, 12, 50, 15orbsta2 17747 . . . . . . . . . 10  |-  ( ( (  .(+)  e.  ( G  GrpAct  S )  /\  B  e.  S )  /\  X  e.  Fin )  ->  ( # `  X
)  =  ( (
# `  [ B ]  .~  )  x.  ( # `
 H ) ) )
5210, 11, 3, 51syl21anc 1325 . . . . . . . . 9  |-  ( ph  ->  ( # `  X
)  =  ( (
# `  [ B ]  .~  )  x.  ( # `
 H ) ) )
5352oveq2d 6666 . . . . . . . 8  |-  ( ph  ->  ( P  pCnt  ( # `
 X ) )  =  ( P  pCnt  ( ( # `  [ B ]  .~  )  x.  ( # `  H
) ) ) )
5436nnzd 11481 . . . . . . . . 9  |-  ( ph  ->  ( # `  [ B ]  .~  )  e.  ZZ )
5536nnne0d 11065 . . . . . . . . 9  |-  ( ph  ->  ( # `  [ B ]  .~  )  =/=  0 )
56 eqid 2622 . . . . . . . . . . . . . 14  |-  ( 0g
`  G )  =  ( 0g `  G
)
5756subg0cl 17602 . . . . . . . . . . . . 13  |-  ( H  e.  (SubGrp `  G
)  ->  ( 0g `  G )  e.  H
)
5814, 57syl 17 . . . . . . . . . . . 12  |-  ( ph  ->  ( 0g `  G
)  e.  H )
59 ne0i 3921 . . . . . . . . . . . 12  |-  ( ( 0g `  G )  e.  H  ->  H  =/=  (/) )
6058, 59syl 17 . . . . . . . . . . 11  |-  ( ph  ->  H  =/=  (/) )
61 ssrab2 3687 . . . . . . . . . . . . . 14  |-  { u  e.  X  |  (
u  .(+)  B )  =  B }  C_  X
6212, 61eqsstri 3635 . . . . . . . . . . . . 13  |-  H  C_  X
63 ssfi 8180 . . . . . . . . . . . . 13  |-  ( ( X  e.  Fin  /\  H  C_  X )  ->  H  e.  Fin )
643, 62, 63sylancl 694 . . . . . . . . . . . 12  |-  ( ph  ->  H  e.  Fin )
65 hashnncl 13157 . . . . . . . . . . . 12  |-  ( H  e.  Fin  ->  (
( # `  H )  e.  NN  <->  H  =/=  (/) ) )
6664, 65syl 17 . . . . . . . . . . 11  |-  ( ph  ->  ( ( # `  H
)  e.  NN  <->  H  =/=  (/) ) )
6760, 66mpbird 247 . . . . . . . . . 10  |-  ( ph  ->  ( # `  H
)  e.  NN )
6867nnzd 11481 . . . . . . . . 9  |-  ( ph  ->  ( # `  H
)  e.  ZZ )
6967nnne0d 11065 . . . . . . . . 9  |-  ( ph  ->  ( # `  H
)  =/=  0 )
70 pcmul 15556 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  (
( # `  [ B ]  .~  )  e.  ZZ  /\  ( # `  [ B ]  .~  )  =/=  0 )  /\  (
( # `  H )  e.  ZZ  /\  ( # `
 H )  =/=  0 ) )  -> 
( P  pCnt  (
( # `  [ B ]  .~  )  x.  ( # `
 H ) ) )  =  ( ( P  pCnt  ( # `  [ B ]  .~  )
)  +  ( P 
pCnt  ( # `  H
) ) ) )
714, 54, 55, 68, 69, 70syl122anc 1335 . . . . . . . 8  |-  ( ph  ->  ( P  pCnt  (
( # `  [ B ]  .~  )  x.  ( # `
 H ) ) )  =  ( ( P  pCnt  ( # `  [ B ]  .~  )
)  +  ( P 
pCnt  ( # `  H
) ) ) )
7253, 71eqtrd 2656 . . . . . . 7  |-  ( ph  ->  ( P  pCnt  ( # `
 X ) )  =  ( ( P 
pCnt  ( # `  [ B ]  .~  )
)  +  ( P 
pCnt  ( # `  H
) ) ) )
7349, 72breqtrd 4679 . . . . . 6  |-  ( ph  ->  ( ( P  pCnt  (
# `  [ B ]  .~  ) )  +  N )  <_  (
( P  pCnt  ( # `
 [ B ]  .~  ) )  +  ( P  pCnt  ( # `  H
) ) ) )
744, 67pccld 15555 . . . . . . . 8  |-  ( ph  ->  ( P  pCnt  ( # `
 H ) )  e.  NN0 )
7574nn0red 11352 . . . . . . 7  |-  ( ph  ->  ( P  pCnt  ( # `
 H ) )  e.  RR )
7639, 75, 38leadd2d 10622 . . . . . 6  |-  ( ph  ->  ( N  <_  ( P  pCnt  ( # `  H
) )  <->  ( ( P  pCnt  ( # `  [ B ]  .~  )
)  +  N )  <_  ( ( P 
pCnt  ( # `  [ B ]  .~  )
)  +  ( P 
pCnt  ( # `  H
) ) ) ) )
7773, 76mpbird 247 . . . . 5  |-  ( ph  ->  N  <_  ( P  pCnt  ( # `  H
) ) )
78 pcdvdsb 15573 . . . . . 6  |-  ( ( P  e.  Prime  /\  ( # `
 H )  e.  ZZ  /\  N  e. 
NN0 )  ->  ( N  <_  ( P  pCnt  (
# `  H )
)  <->  ( P ^ N )  ||  ( # `
 H ) ) )
794, 68, 5, 78syl3anc 1326 . . . . 5  |-  ( ph  ->  ( N  <_  ( P  pCnt  ( # `  H
) )  <->  ( P ^ N )  ||  ( # `
 H ) ) )
8077, 79mpbid 222 . . . 4  |-  ( ph  ->  ( P ^ N
)  ||  ( # `  H
) )
81 prmnn 15388 . . . . . . . 8  |-  ( P  e.  Prime  ->  P  e.  NN )
824, 81syl 17 . . . . . . 7  |-  ( ph  ->  P  e.  NN )
8382, 5nnexpcld 13030 . . . . . 6  |-  ( ph  ->  ( P ^ N
)  e.  NN )
8483nnzd 11481 . . . . 5  |-  ( ph  ->  ( P ^ N
)  e.  ZZ )
85 dvdsle 15032 . . . . 5  |-  ( ( ( P ^ N
)  e.  ZZ  /\  ( # `  H )  e.  NN )  -> 
( ( P ^ N )  ||  ( # `
 H )  -> 
( P ^ N
)  <_  ( # `  H
) ) )
8684, 67, 85syl2anc 693 . . . 4  |-  ( ph  ->  ( ( P ^ N )  ||  ( # `
 H )  -> 
( P ^ N
)  <_  ( # `  H
) ) )
8780, 86mpd 15 . . 3  |-  ( ph  ->  ( P ^ N
)  <_  ( # `  H
) )
88 hashcl 13147 . . . . . 6  |-  ( H  e.  Fin  ->  ( # `
 H )  e. 
NN0 )
8964, 88syl 17 . . . . 5  |-  ( ph  ->  ( # `  H
)  e.  NN0 )
9089nn0red 11352 . . . 4  |-  ( ph  ->  ( # `  H
)  e.  RR )
9183nnred 11035 . . . 4  |-  ( ph  ->  ( P ^ N
)  e.  RR )
9290, 91letri3d 10179 . . 3  |-  ( ph  ->  ( ( # `  H
)  =  ( P ^ N )  <->  ( ( # `
 H )  <_ 
( P ^ N
)  /\  ( P ^ N )  <_  ( # `
 H ) ) ) )
9316, 87, 92mpbir2and 957 . 2  |-  ( ph  ->  ( # `  H
)  =  ( P ^ N ) )
94 fveq2 6191 . . . 4  |-  ( h  =  H  ->  ( # `
 h )  =  ( # `  H
) )
9594eqeq1d 2624 . . 3  |-  ( h  =  H  ->  (
( # `  h )  =  ( P ^ N )  <->  ( # `  H
)  =  ( P ^ N ) ) )
9695rspcev 3309 . 2  |-  ( ( H  e.  (SubGrp `  G )  /\  ( # `
 H )  =  ( P ^ N
) )  ->  E. h  e.  (SubGrp `  G )
( # `  h )  =  ( P ^ N ) )
9714, 93, 96syl2anc 693 1  |-  ( ph  ->  E. h  e.  (SubGrp `  G ) ( # `  h )  =  ( P ^ N ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   E.wrex 2913   {crab 2916    C_ wss 3574   (/)c0 3915   ~Pcpw 4158   {cpr 4179   class class class wbr 4653   {copab 4712    |-> cmpt 4729   dom cdm 5114   ran crn 5115   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652    Er wer 7739   [cec 7740   Fincfn 7955   RRcr 9935   0cc0 9936    + caddc 9939    x. cmul 9941    <_ cle 10075    - cmin 10266   NNcn 11020   NN0cn0 11292   ZZcz 11377   ^cexp 12860   #chash 13117    || cdvds 14983   Primecprime 15385    pCnt cpc 15541   Basecbs 15857   +g cplusg 15941   0gc0g 16100   Grpcgrp 17422  SubGrpcsubg 17588   ~QG cqg 17590    GrpAct cga 17722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-ec 7744  df-qs 7748  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-dvds 14984  df-gcd 15217  df-prm 15386  df-pc 15542  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-subg 17591  df-eqg 17593  df-ga 17723
This theorem is referenced by:  sylow1  18018
  Copyright terms: Public domain W3C validator