MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vitalilem2 Structured version   Visualization version   Unicode version

Theorem vitalilem2 23378
Description: Lemma for vitali 23382. (Contributed by Mario Carneiro, 16-Jun-2014.)
Hypotheses
Ref Expression
vitali.1  |-  .~  =  { <. x ,  y
>.  |  ( (
x  e.  ( 0 [,] 1 )  /\  y  e.  ( 0 [,] 1 ) )  /\  ( x  -  y )  e.  QQ ) }
vitali.2  |-  S  =  ( ( 0 [,] 1 ) /.  .~  )
vitali.3  |-  ( ph  ->  F  Fn  S )
vitali.4  |-  ( ph  ->  A. z  e.  S  ( z  =/=  (/)  ->  ( F `  z )  e.  z ) )
vitali.5  |-  ( ph  ->  G : NN -1-1-onto-> ( QQ  i^i  ( -u 1 [,] 1 ) ) )
vitali.6  |-  T  =  ( n  e.  NN  |->  { s  e.  RR  |  ( s  -  ( G `  n ) )  e.  ran  F } )
vitali.7  |-  ( ph  ->  -.  ran  F  e.  ( ~P RR  \  dom  vol ) )
Assertion
Ref Expression
vitalilem2  |-  ( ph  ->  ( ran  F  C_  ( 0 [,] 1
)  /\  ( 0 [,] 1 )  C_  U_ m  e.  NN  ( T `  m )  /\  U_ m  e.  NN  ( T `  m ) 
C_  ( -u 1 [,] 2 ) ) )
Distinct variable groups:    m, n, s, x, y, z, G    ph, m, n, x, z   
z, S    T, m, x    m, F, n, s, x, y, z    .~ , m, n, s, x, y, z
Allowed substitution hints:    ph( y, s)    S( x, y, m, n, s)    T( y, z, n, s)

Proof of Theorem vitalilem2
Dummy variables  v  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vitali.3 . . . 4  |-  ( ph  ->  F  Fn  S )
2 vitali.4 . . . . 5  |-  ( ph  ->  A. z  e.  S  ( z  =/=  (/)  ->  ( F `  z )  e.  z ) )
3 vitali.2 . . . . . . . . 9  |-  S  =  ( ( 0 [,] 1 ) /.  .~  )
4 neeq1 2856 . . . . . . . . 9  |-  ( [ v ]  .~  =  z  ->  ( [ v ]  .~  =/=  (/)  <->  z  =/=  (/) ) )
5 vitali.1 . . . . . . . . . . . . . 14  |-  .~  =  { <. x ,  y
>.  |  ( (
x  e.  ( 0 [,] 1 )  /\  y  e.  ( 0 [,] 1 ) )  /\  ( x  -  y )  e.  QQ ) }
65vitalilem1 23376 . . . . . . . . . . . . 13  |-  .~  Er  ( 0 [,] 1
)
7 erdm 7752 . . . . . . . . . . . . 13  |-  (  .~  Er  ( 0 [,] 1
)  ->  dom  .~  =  ( 0 [,] 1
) )
86, 7ax-mp 5 . . . . . . . . . . . 12  |-  dom  .~  =  ( 0 [,] 1 )
98eleq2i 2693 . . . . . . . . . . 11  |-  ( v  e.  dom  .~  <->  v  e.  ( 0 [,] 1
) )
10 ecdmn0 7789 . . . . . . . . . . 11  |-  ( v  e.  dom  .~  <->  [ v ]  .~  =/=  (/) )
119, 10bitr3i 266 . . . . . . . . . 10  |-  ( v  e.  ( 0 [,] 1 )  <->  [ v ]  .~  =/=  (/) )
1211biimpi 206 . . . . . . . . 9  |-  ( v  e.  ( 0 [,] 1 )  ->  [ v ]  .~  =/=  (/) )
133, 4, 12ectocl 7815 . . . . . . . 8  |-  ( z  e.  S  ->  z  =/=  (/) )
1413adantl 482 . . . . . . 7  |-  ( (
ph  /\  z  e.  S )  ->  z  =/=  (/) )
15 sseq1 3626 . . . . . . . . . 10  |-  ( [ w ]  .~  =  z  ->  ( [ w ]  .~  C_  ( 0 [,] 1 )  <->  z  C_  ( 0 [,] 1
) ) )
166a1i 11 . . . . . . . . . . 11  |-  ( w  e.  ( 0 [,] 1 )  ->  .~  Er  ( 0 [,] 1
) )
1716ecss 7788 . . . . . . . . . 10  |-  ( w  e.  ( 0 [,] 1 )  ->  [ w ]  .~  C_  ( 0 [,] 1 ) )
183, 15, 17ectocl 7815 . . . . . . . . 9  |-  ( z  e.  S  ->  z  C_  ( 0 [,] 1
) )
1918adantl 482 . . . . . . . 8  |-  ( (
ph  /\  z  e.  S )  ->  z  C_  ( 0 [,] 1
) )
2019sseld 3602 . . . . . . 7  |-  ( (
ph  /\  z  e.  S )  ->  (
( F `  z
)  e.  z  -> 
( F `  z
)  e.  ( 0 [,] 1 ) ) )
2114, 20embantd 59 . . . . . 6  |-  ( (
ph  /\  z  e.  S )  ->  (
( z  =/=  (/)  ->  ( F `  z )  e.  z )  ->  ( F `  z )  e.  ( 0 [,] 1
) ) )
2221ralimdva 2962 . . . . 5  |-  ( ph  ->  ( A. z  e.  S  ( z  =/=  (/)  ->  ( F `  z )  e.  z )  ->  A. z  e.  S  ( F `  z )  e.  ( 0 [,] 1 ) ) )
232, 22mpd 15 . . . 4  |-  ( ph  ->  A. z  e.  S  ( F `  z )  e.  ( 0 [,] 1 ) )
24 ffnfv 6388 . . . 4  |-  ( F : S --> ( 0 [,] 1 )  <->  ( F  Fn  S  /\  A. z  e.  S  ( F `  z )  e.  ( 0 [,] 1 ) ) )
251, 23, 24sylanbrc 698 . . 3  |-  ( ph  ->  F : S --> ( 0 [,] 1 ) )
26 frn 6053 . . 3  |-  ( F : S --> ( 0 [,] 1 )  ->  ran  F  C_  ( 0 [,] 1 ) )
2725, 26syl 17 . 2  |-  ( ph  ->  ran  F  C_  (
0 [,] 1 ) )
28 vitali.5 . . . . . . . . 9  |-  ( ph  ->  G : NN -1-1-onto-> ( QQ  i^i  ( -u 1 [,] 1 ) ) )
2928adantr 481 . . . . . . . 8  |-  ( (
ph  /\  v  e.  ( 0 [,] 1
) )  ->  G : NN -1-1-onto-> ( QQ  i^i  ( -u 1 [,] 1 ) ) )
30 f1ocnv 6149 . . . . . . . 8  |-  ( G : NN -1-1-onto-> ( QQ  i^i  ( -u 1 [,] 1 ) )  ->  `' G : ( QQ  i^i  ( -u 1 [,] 1
) ) -1-1-onto-> NN )
31 f1of 6137 . . . . . . . 8  |-  ( `' G : ( QQ 
i^i  ( -u 1 [,] 1 ) ) -1-1-onto-> NN  ->  `' G : ( QQ 
i^i  ( -u 1 [,] 1 ) ) --> NN )
3229, 30, 313syl 18 . . . . . . 7  |-  ( (
ph  /\  v  e.  ( 0 [,] 1
) )  ->  `' G : ( QQ  i^i  ( -u 1 [,] 1
) ) --> NN )
33 ovex 6678 . . . . . . . . . . . . . . 15  |-  ( 0 [,] 1 )  e. 
_V
34 erex 7766 . . . . . . . . . . . . . . 15  |-  (  .~  Er  ( 0 [,] 1
)  ->  ( (
0 [,] 1 )  e.  _V  ->  .~  e.  _V ) )
356, 33, 34mp2 9 . . . . . . . . . . . . . 14  |-  .~  e.  _V
3635ecelqsi 7803 . . . . . . . . . . . . 13  |-  ( v  e.  ( 0 [,] 1 )  ->  [ v ]  .~  e.  ( ( 0 [,] 1
) /.  .~  )
)
3736adantl 482 . . . . . . . . . . . 12  |-  ( (
ph  /\  v  e.  ( 0 [,] 1
) )  ->  [ v ]  .~  e.  ( ( 0 [,] 1
) /.  .~  )
)
3837, 3syl6eleqr 2712 . . . . . . . . . . 11  |-  ( (
ph  /\  v  e.  ( 0 [,] 1
) )  ->  [ v ]  .~  e.  S
)
392adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  v  e.  ( 0 [,] 1
) )  ->  A. z  e.  S  ( z  =/=  (/)  ->  ( F `  z )  e.  z ) )
40 simpr 477 . . . . . . . . . . . 12  |-  ( (
ph  /\  v  e.  ( 0 [,] 1
) )  ->  v  e.  ( 0 [,] 1
) )
4140, 11sylib 208 . . . . . . . . . . 11  |-  ( (
ph  /\  v  e.  ( 0 [,] 1
) )  ->  [ v ]  .~  =/=  (/) )
42 neeq1 2856 . . . . . . . . . . . . 13  |-  ( z  =  [ v ]  .~  ->  ( z  =/=  (/)  <->  [ v ]  .~  =/=  (/) ) )
43 fveq2 6191 . . . . . . . . . . . . . 14  |-  ( z  =  [ v ]  .~  ->  ( F `  z )  =  ( F `  [ v ]  .~  ) )
44 id 22 . . . . . . . . . . . . . 14  |-  ( z  =  [ v ]  .~  ->  z  =  [ v ]  .~  )
4543, 44eleq12d 2695 . . . . . . . . . . . . 13  |-  ( z  =  [ v ]  .~  ->  ( ( F `  z )  e.  z  <->  ( F `  [ v ]  .~  )  e.  [ v ]  .~  ) )
4642, 45imbi12d 334 . . . . . . . . . . . 12  |-  ( z  =  [ v ]  .~  ->  ( (
z  =/=  (/)  ->  ( F `  z )  e.  z )  <->  ( [
v ]  .~  =/=  (/) 
->  ( F `  [
v ]  .~  )  e.  [ v ]  .~  ) ) )
4746rspcv 3305 . . . . . . . . . . 11  |-  ( [ v ]  .~  e.  S  ->  ( A. z  e.  S  ( z  =/=  (/)  ->  ( F `  z )  e.  z )  ->  ( [
v ]  .~  =/=  (/) 
->  ( F `  [
v ]  .~  )  e.  [ v ]  .~  ) ) )
4838, 39, 41, 47syl3c 66 . . . . . . . . . 10  |-  ( (
ph  /\  v  e.  ( 0 [,] 1
) )  ->  ( F `  [ v ]  .~  )  e.  [
v ]  .~  )
49 fvex 6201 . . . . . . . . . . . 12  |-  ( F `
 [ v ]  .~  )  e.  _V
50 vex 3203 . . . . . . . . . . . 12  |-  v  e. 
_V
5149, 50elec 7786 . . . . . . . . . . 11  |-  ( ( F `  [ v ]  .~  )  e. 
[ v ]  .~  <->  v  .~  ( F `  [ v ]  .~  ) )
52 oveq12 6659 . . . . . . . . . . . . 13  |-  ( ( x  =  v  /\  y  =  ( F `  [ v ]  .~  ) )  ->  (
x  -  y )  =  ( v  -  ( F `  [ v ]  .~  ) ) )
5352eleq1d 2686 . . . . . . . . . . . 12  |-  ( ( x  =  v  /\  y  =  ( F `  [ v ]  .~  ) )  ->  (
( x  -  y
)  e.  QQ  <->  ( v  -  ( F `  [ v ]  .~  ) )  e.  QQ ) )
5453, 5brab2a 5194 . . . . . . . . . . 11  |-  ( v  .~  ( F `  [ v ]  .~  ) 
<->  ( ( v  e.  ( 0 [,] 1
)  /\  ( F `  [ v ]  .~  )  e.  ( 0 [,] 1 ) )  /\  ( v  -  ( F `  [ v ]  .~  ) )  e.  QQ ) )
5551, 54bitri 264 . . . . . . . . . 10  |-  ( ( F `  [ v ]  .~  )  e. 
[ v ]  .~  <->  ( ( v  e.  ( 0 [,] 1 )  /\  ( F `  [ v ]  .~  )  e.  ( 0 [,] 1 ) )  /\  ( v  -  ( F `  [ v ]  .~  ) )  e.  QQ ) )
5648, 55sylib 208 . . . . . . . . 9  |-  ( (
ph  /\  v  e.  ( 0 [,] 1
) )  ->  (
( v  e.  ( 0 [,] 1 )  /\  ( F `  [ v ]  .~  )  e.  ( 0 [,] 1 ) )  /\  ( v  -  ( F `  [ v ]  .~  ) )  e.  QQ ) )
5756simprd 479 . . . . . . . 8  |-  ( (
ph  /\  v  e.  ( 0 [,] 1
) )  ->  (
v  -  ( F `
 [ v ]  .~  ) )  e.  QQ )
58 0re 10040 . . . . . . . . . . . . 13  |-  0  e.  RR
59 1re 10039 . . . . . . . . . . . . 13  |-  1  e.  RR
6058, 59elicc2i 12239 . . . . . . . . . . . 12  |-  ( v  e.  ( 0 [,] 1 )  <->  ( v  e.  RR  /\  0  <_ 
v  /\  v  <_  1 ) )
6140, 60sylib 208 . . . . . . . . . . 11  |-  ( (
ph  /\  v  e.  ( 0 [,] 1
) )  ->  (
v  e.  RR  /\  0  <_  v  /\  v  <_  1 ) )
6261simp1d 1073 . . . . . . . . . 10  |-  ( (
ph  /\  v  e.  ( 0 [,] 1
) )  ->  v  e.  RR )
6356simpld 475 . . . . . . . . . . . . 13  |-  ( (
ph  /\  v  e.  ( 0 [,] 1
) )  ->  (
v  e.  ( 0 [,] 1 )  /\  ( F `  [ v ]  .~  )  e.  ( 0 [,] 1
) ) )
6463simprd 479 . . . . . . . . . . . 12  |-  ( (
ph  /\  v  e.  ( 0 [,] 1
) )  ->  ( F `  [ v ]  .~  )  e.  ( 0 [,] 1 ) )
6558, 59elicc2i 12239 . . . . . . . . . . . 12  |-  ( ( F `  [ v ]  .~  )  e.  ( 0 [,] 1
)  <->  ( ( F `
 [ v ]  .~  )  e.  RR  /\  0  <_  ( F `  [ v ]  .~  )  /\  ( F `  [ v ]  .~  )  <_  1 ) )
6664, 65sylib 208 . . . . . . . . . . 11  |-  ( (
ph  /\  v  e.  ( 0 [,] 1
) )  ->  (
( F `  [
v ]  .~  )  e.  RR  /\  0  <_ 
( F `  [
v ]  .~  )  /\  ( F `  [
v ]  .~  )  <_  1 ) )
6766simp1d 1073 . . . . . . . . . 10  |-  ( (
ph  /\  v  e.  ( 0 [,] 1
) )  ->  ( F `  [ v ]  .~  )  e.  RR )
6862, 67resubcld 10458 . . . . . . . . 9  |-  ( (
ph  /\  v  e.  ( 0 [,] 1
) )  ->  (
v  -  ( F `
 [ v ]  .~  ) )  e.  RR )
6967, 62resubcld 10458 . . . . . . . . . . . 12  |-  ( (
ph  /\  v  e.  ( 0 [,] 1
) )  ->  (
( F `  [
v ]  .~  )  -  v )  e.  RR )
70 1red 10055 . . . . . . . . . . . 12  |-  ( (
ph  /\  v  e.  ( 0 [,] 1
) )  ->  1  e.  RR )
7161simp2d 1074 . . . . . . . . . . . . 13  |-  ( (
ph  /\  v  e.  ( 0 [,] 1
) )  ->  0  <_  v )
7267, 62subge02d 10619 . . . . . . . . . . . . 13  |-  ( (
ph  /\  v  e.  ( 0 [,] 1
) )  ->  (
0  <_  v  <->  ( ( F `  [ v ]  .~  )  -  v
)  <_  ( F `  [ v ]  .~  ) ) )
7371, 72mpbid 222 . . . . . . . . . . . 12  |-  ( (
ph  /\  v  e.  ( 0 [,] 1
) )  ->  (
( F `  [
v ]  .~  )  -  v )  <_ 
( F `  [
v ]  .~  )
)
7466simp3d 1075 . . . . . . . . . . . 12  |-  ( (
ph  /\  v  e.  ( 0 [,] 1
) )  ->  ( F `  [ v ]  .~  )  <_  1
)
7569, 67, 70, 73, 74letrd 10194 . . . . . . . . . . 11  |-  ( (
ph  /\  v  e.  ( 0 [,] 1
) )  ->  (
( F `  [
v ]  .~  )  -  v )  <_ 
1 )
7669, 70lenegd 10606 . . . . . . . . . . 11  |-  ( (
ph  /\  v  e.  ( 0 [,] 1
) )  ->  (
( ( F `  [ v ]  .~  )  -  v )  <_  1  <->  -u 1  <_  -u (
( F `  [
v ]  .~  )  -  v ) ) )
7775, 76mpbid 222 . . . . . . . . . 10  |-  ( (
ph  /\  v  e.  ( 0 [,] 1
) )  ->  -u 1  <_ 
-u ( ( F `
 [ v ]  .~  )  -  v
) )
7867recnd 10068 . . . . . . . . . . 11  |-  ( (
ph  /\  v  e.  ( 0 [,] 1
) )  ->  ( F `  [ v ]  .~  )  e.  CC )
7962recnd 10068 . . . . . . . . . . 11  |-  ( (
ph  /\  v  e.  ( 0 [,] 1
) )  ->  v  e.  CC )
8078, 79negsubdi2d 10408 . . . . . . . . . 10  |-  ( (
ph  /\  v  e.  ( 0 [,] 1
) )  ->  -u (
( F `  [
v ]  .~  )  -  v )  =  ( v  -  ( F `  [ v ]  .~  ) ) )
8177, 80breqtrd 4679 . . . . . . . . 9  |-  ( (
ph  /\  v  e.  ( 0 [,] 1
) )  ->  -u 1  <_  ( v  -  ( F `  [ v ]  .~  ) ) )
8266simp2d 1074 . . . . . . . . . . 11  |-  ( (
ph  /\  v  e.  ( 0 [,] 1
) )  ->  0  <_  ( F `  [
v ]  .~  )
)
8362, 67subge02d 10619 . . . . . . . . . . 11  |-  ( (
ph  /\  v  e.  ( 0 [,] 1
) )  ->  (
0  <_  ( F `  [ v ]  .~  ) 
<->  ( v  -  ( F `  [ v ]  .~  ) )  <_ 
v ) )
8482, 83mpbid 222 . . . . . . . . . 10  |-  ( (
ph  /\  v  e.  ( 0 [,] 1
) )  ->  (
v  -  ( F `
 [ v ]  .~  ) )  <_ 
v )
8561simp3d 1075 . . . . . . . . . 10  |-  ( (
ph  /\  v  e.  ( 0 [,] 1
) )  ->  v  <_  1 )
8668, 62, 70, 84, 85letrd 10194 . . . . . . . . 9  |-  ( (
ph  /\  v  e.  ( 0 [,] 1
) )  ->  (
v  -  ( F `
 [ v ]  .~  ) )  <_ 
1 )
87 neg1rr 11125 . . . . . . . . . 10  |-  -u 1  e.  RR
8887, 59elicc2i 12239 . . . . . . . . 9  |-  ( ( v  -  ( F `
 [ v ]  .~  ) )  e.  ( -u 1 [,] 1 )  <->  ( (
v  -  ( F `
 [ v ]  .~  ) )  e.  RR  /\  -u 1  <_  ( v  -  ( F `  [ v ]  .~  ) )  /\  ( v  -  ( F `  [ v ]  .~  ) )  <_ 
1 ) )
8968, 81, 86, 88syl3anbrc 1246 . . . . . . . 8  |-  ( (
ph  /\  v  e.  ( 0 [,] 1
) )  ->  (
v  -  ( F `
 [ v ]  .~  ) )  e.  ( -u 1 [,] 1 ) )
9057, 89elind 3798 . . . . . . 7  |-  ( (
ph  /\  v  e.  ( 0 [,] 1
) )  ->  (
v  -  ( F `
 [ v ]  .~  ) )  e.  ( QQ  i^i  ( -u 1 [,] 1 ) ) )
9132, 90ffvelrnd 6360 . . . . . 6  |-  ( (
ph  /\  v  e.  ( 0 [,] 1
) )  ->  ( `' G `  ( v  -  ( F `  [ v ]  .~  ) ) )  e.  NN )
92 f1ocnvfv2 6533 . . . . . . . . . . . 12  |-  ( ( G : NN -1-1-onto-> ( QQ  i^i  ( -u 1 [,] 1 ) )  /\  ( v  -  ( F `  [ v ]  .~  ) )  e.  ( QQ  i^i  ( -u
1 [,] 1 ) ) )  ->  ( G `  ( `' G `  ( v  -  ( F `  [ v ]  .~  ) ) ) )  =  ( v  -  ( F `  [ v ]  .~  ) ) )
9329, 90, 92syl2anc 693 . . . . . . . . . . 11  |-  ( (
ph  /\  v  e.  ( 0 [,] 1
) )  ->  ( G `  ( `' G `  ( v  -  ( F `  [ v ]  .~  ) ) ) )  =  ( v  -  ( F `  [ v ]  .~  ) ) )
9493oveq2d 6666 . . . . . . . . . 10  |-  ( (
ph  /\  v  e.  ( 0 [,] 1
) )  ->  (
v  -  ( G `
 ( `' G `  ( v  -  ( F `  [ v ]  .~  ) ) ) ) )  =  ( v  -  ( v  -  ( F `  [ v ]  .~  ) ) ) )
9579, 78nncand 10397 . . . . . . . . . 10  |-  ( (
ph  /\  v  e.  ( 0 [,] 1
) )  ->  (
v  -  ( v  -  ( F `  [ v ]  .~  ) ) )  =  ( F `  [
v ]  .~  )
)
9694, 95eqtrd 2656 . . . . . . . . 9  |-  ( (
ph  /\  v  e.  ( 0 [,] 1
) )  ->  (
v  -  ( G `
 ( `' G `  ( v  -  ( F `  [ v ]  .~  ) ) ) ) )  =  ( F `  [ v ]  .~  ) )
971adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  v  e.  ( 0 [,] 1
) )  ->  F  Fn  S )
98 fnfvelrn 6356 . . . . . . . . . 10  |-  ( ( F  Fn  S  /\  [ v ]  .~  e.  S )  ->  ( F `  [ v ]  .~  )  e.  ran  F )
9997, 38, 98syl2anc 693 . . . . . . . . 9  |-  ( (
ph  /\  v  e.  ( 0 [,] 1
) )  ->  ( F `  [ v ]  .~  )  e.  ran  F )
10096, 99eqeltrd 2701 . . . . . . . 8  |-  ( (
ph  /\  v  e.  ( 0 [,] 1
) )  ->  (
v  -  ( G `
 ( `' G `  ( v  -  ( F `  [ v ]  .~  ) ) ) ) )  e.  ran  F )
101 oveq1 6657 . . . . . . . . . 10  |-  ( s  =  v  ->  (
s  -  ( G `
 ( `' G `  ( v  -  ( F `  [ v ]  .~  ) ) ) ) )  =  ( v  -  ( G `
 ( `' G `  ( v  -  ( F `  [ v ]  .~  ) ) ) ) ) )
102101eleq1d 2686 . . . . . . . . 9  |-  ( s  =  v  ->  (
( s  -  ( G `  ( `' G `  ( v  -  ( F `  [ v ]  .~  ) ) ) ) )  e.  ran  F  <->  ( v  -  ( G `
 ( `' G `  ( v  -  ( F `  [ v ]  .~  ) ) ) ) )  e.  ran  F ) )
103102elrab 3363 . . . . . . . 8  |-  ( v  e.  { s  e.  RR  |  ( s  -  ( G `  ( `' G `  ( v  -  ( F `  [ v ]  .~  ) ) ) ) )  e.  ran  F } 
<->  ( v  e.  RR  /\  ( v  -  ( G `  ( `' G `  ( v  -  ( F `  [ v ]  .~  ) ) ) ) )  e.  ran  F
) )
10462, 100, 103sylanbrc 698 . . . . . . 7  |-  ( (
ph  /\  v  e.  ( 0 [,] 1
) )  ->  v  e.  { s  e.  RR  |  ( s  -  ( G `  ( `' G `  ( v  -  ( F `  [ v ]  .~  ) ) ) ) )  e.  ran  F } )
105 fveq2 6191 . . . . . . . . . . . 12  |-  ( n  =  ( `' G `  ( v  -  ( F `  [ v ]  .~  ) ) )  ->  ( G `  n )  =  ( G `  ( `' G `  ( v  -  ( F `  [ v ]  .~  ) ) ) ) )
106105oveq2d 6666 . . . . . . . . . . 11  |-  ( n  =  ( `' G `  ( v  -  ( F `  [ v ]  .~  ) ) )  ->  ( s  -  ( G `  n ) )  =  ( s  -  ( G `  ( `' G `  ( v  -  ( F `  [ v ]  .~  ) ) ) ) ) )
107106eleq1d 2686 . . . . . . . . . 10  |-  ( n  =  ( `' G `  ( v  -  ( F `  [ v ]  .~  ) ) )  ->  ( ( s  -  ( G `  n ) )  e. 
ran  F  <->  ( s  -  ( G `  ( `' G `  ( v  -  ( F `  [ v ]  .~  ) ) ) ) )  e.  ran  F
) )
108107rabbidv 3189 . . . . . . . . 9  |-  ( n  =  ( `' G `  ( v  -  ( F `  [ v ]  .~  ) ) )  ->  { s  e.  RR  |  ( s  -  ( G `  n ) )  e. 
ran  F }  =  { s  e.  RR  |  ( s  -  ( G `  ( `' G `  ( v  -  ( F `  [ v ]  .~  ) ) ) ) )  e.  ran  F } )
109 vitali.6 . . . . . . . . 9  |-  T  =  ( n  e.  NN  |->  { s  e.  RR  |  ( s  -  ( G `  n ) )  e.  ran  F } )
110 reex 10027 . . . . . . . . . 10  |-  RR  e.  _V
111110rabex 4813 . . . . . . . . 9  |-  { s  e.  RR  |  ( s  -  ( G `
 ( `' G `  ( v  -  ( F `  [ v ]  .~  ) ) ) ) )  e.  ran  F }  e.  _V
112108, 109, 111fvmpt 6282 . . . . . . . 8  |-  ( ( `' G `  ( v  -  ( F `  [ v ]  .~  ) ) )  e.  NN  ->  ( T `  ( `' G `  ( v  -  ( F `  [ v ]  .~  ) ) ) )  =  { s  e.  RR  |  ( s  -  ( G `
 ( `' G `  ( v  -  ( F `  [ v ]  .~  ) ) ) ) )  e.  ran  F } )
11391, 112syl 17 . . . . . . 7  |-  ( (
ph  /\  v  e.  ( 0 [,] 1
) )  ->  ( T `  ( `' G `  ( v  -  ( F `  [ v ]  .~  ) ) ) )  =  { s  e.  RR  |  ( s  -  ( G `  ( `' G `  ( v  -  ( F `  [ v ]  .~  ) ) ) ) )  e.  ran  F } )
114104, 113eleqtrrd 2704 . . . . . 6  |-  ( (
ph  /\  v  e.  ( 0 [,] 1
) )  ->  v  e.  ( T `  ( `' G `  ( v  -  ( F `  [ v ]  .~  ) ) ) ) )
11591, 114jca 554 . . . . 5  |-  ( (
ph  /\  v  e.  ( 0 [,] 1
) )  ->  (
( `' G `  ( v  -  ( F `  [ v ]  .~  ) ) )  e.  NN  /\  v  e.  ( T `  ( `' G `  ( v  -  ( F `  [ v ]  .~  ) ) ) ) ) )
116 fveq2 6191 . . . . . 6  |-  ( m  =  ( `' G `  ( v  -  ( F `  [ v ]  .~  ) ) )  ->  ( T `  m )  =  ( T `  ( `' G `  ( v  -  ( F `  [ v ]  .~  ) ) ) ) )
117116eliuni 4526 . . . . 5  |-  ( ( ( `' G `  ( v  -  ( F `  [ v ]  .~  ) ) )  e.  NN  /\  v  e.  ( T `  ( `' G `  ( v  -  ( F `  [ v ]  .~  ) ) ) ) )  ->  v  e.  U_ m  e.  NN  ( T `  m )
)
118115, 117syl 17 . . . 4  |-  ( (
ph  /\  v  e.  ( 0 [,] 1
) )  ->  v  e.  U_ m  e.  NN  ( T `  m ) )
119118ex 450 . . 3  |-  ( ph  ->  ( v  e.  ( 0 [,] 1 )  ->  v  e.  U_ m  e.  NN  ( T `  m )
) )
120119ssrdv 3609 . 2  |-  ( ph  ->  ( 0 [,] 1
)  C_  U_ m  e.  NN  ( T `  m ) )
121 eliun 4524 . . . 4  |-  ( x  e.  U_ m  e.  NN  ( T `  m )  <->  E. m  e.  NN  x  e.  ( T `  m ) )
122 fveq2 6191 . . . . . . . . . . . . . . . 16  |-  ( n  =  m  ->  ( G `  n )  =  ( G `  m ) )
123122oveq2d 6666 . . . . . . . . . . . . . . 15  |-  ( n  =  m  ->  (
s  -  ( G `
 n ) )  =  ( s  -  ( G `  m ) ) )
124123eleq1d 2686 . . . . . . . . . . . . . 14  |-  ( n  =  m  ->  (
( s  -  ( G `  n )
)  e.  ran  F  <->  ( s  -  ( G `
 m ) )  e.  ran  F ) )
125124rabbidv 3189 . . . . . . . . . . . . 13  |-  ( n  =  m  ->  { s  e.  RR  |  ( s  -  ( G `
 n ) )  e.  ran  F }  =  { s  e.  RR  |  ( s  -  ( G `  m ) )  e.  ran  F } )
126110rabex 4813 . . . . . . . . . . . . 13  |-  { s  e.  RR  |  ( s  -  ( G `
 m ) )  e.  ran  F }  e.  _V
127125, 109, 126fvmpt 6282 . . . . . . . . . . . 12  |-  ( m  e.  NN  ->  ( T `  m )  =  { s  e.  RR  |  ( s  -  ( G `  m ) )  e.  ran  F } )
128127adantl 482 . . . . . . . . . . 11  |-  ( (
ph  /\  m  e.  NN )  ->  ( T `
 m )  =  { s  e.  RR  |  ( s  -  ( G `  m ) )  e.  ran  F } )
129128eleq2d 2687 . . . . . . . . . 10  |-  ( (
ph  /\  m  e.  NN )  ->  ( x  e.  ( T `  m )  <->  x  e.  { s  e.  RR  | 
( s  -  ( G `  m )
)  e.  ran  F } ) )
130129biimpa 501 . . . . . . . . 9  |-  ( ( ( ph  /\  m  e.  NN )  /\  x  e.  ( T `  m
) )  ->  x  e.  { s  e.  RR  |  ( s  -  ( G `  m ) )  e.  ran  F } )
131 oveq1 6657 . . . . . . . . . . 11  |-  ( s  =  x  ->  (
s  -  ( G `
 m ) )  =  ( x  -  ( G `  m ) ) )
132131eleq1d 2686 . . . . . . . . . 10  |-  ( s  =  x  ->  (
( s  -  ( G `  m )
)  e.  ran  F  <->  ( x  -  ( G `
 m ) )  e.  ran  F ) )
133132elrab 3363 . . . . . . . . 9  |-  ( x  e.  { s  e.  RR  |  ( s  -  ( G `  m ) )  e. 
ran  F }  <->  ( x  e.  RR  /\  ( x  -  ( G `  m ) )  e. 
ran  F ) )
134130, 133sylib 208 . . . . . . . 8  |-  ( ( ( ph  /\  m  e.  NN )  /\  x  e.  ( T `  m
) )  ->  (
x  e.  RR  /\  ( x  -  ( G `  m )
)  e.  ran  F
) )
135134simpld 475 . . . . . . 7  |-  ( ( ( ph  /\  m  e.  NN )  /\  x  e.  ( T `  m
) )  ->  x  e.  RR )
13687a1i 11 . . . . . . . 8  |-  ( ( ( ph  /\  m  e.  NN )  /\  x  e.  ( T `  m
) )  ->  -u 1  e.  RR )
137 iccssre 12255 . . . . . . . . . . 11  |-  ( (
-u 1  e.  RR  /\  1  e.  RR )  ->  ( -u 1 [,] 1 )  C_  RR )
13887, 59, 137mp2an 708 . . . . . . . . . 10  |-  ( -u
1 [,] 1 ) 
C_  RR
139 inss2 3834 . . . . . . . . . . 11  |-  ( QQ 
i^i  ( -u 1 [,] 1 ) )  C_  ( -u 1 [,] 1
)
140 f1of 6137 . . . . . . . . . . . . 13  |-  ( G : NN -1-1-onto-> ( QQ  i^i  ( -u 1 [,] 1 ) )  ->  G : NN
--> ( QQ  i^i  ( -u 1 [,] 1 ) ) )
14128, 140syl 17 . . . . . . . . . . . 12  |-  ( ph  ->  G : NN --> ( QQ 
i^i  ( -u 1 [,] 1 ) ) )
142141ffvelrnda 6359 . . . . . . . . . . 11  |-  ( (
ph  /\  m  e.  NN )  ->  ( G `
 m )  e.  ( QQ  i^i  ( -u 1 [,] 1 ) ) )
143139, 142sseldi 3601 . . . . . . . . . 10  |-  ( (
ph  /\  m  e.  NN )  ->  ( G `
 m )  e.  ( -u 1 [,] 1 ) )
144138, 143sseldi 3601 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  NN )  ->  ( G `
 m )  e.  RR )
145144adantr 481 . . . . . . . 8  |-  ( ( ( ph  /\  m  e.  NN )  /\  x  e.  ( T `  m
) )  ->  ( G `  m )  e.  RR )
146143adantr 481 . . . . . . . . . 10  |-  ( ( ( ph  /\  m  e.  NN )  /\  x  e.  ( T `  m
) )  ->  ( G `  m )  e.  ( -u 1 [,] 1 ) )
14787, 59elicc2i 12239 . . . . . . . . . 10  |-  ( ( G `  m )  e.  ( -u 1 [,] 1 )  <->  ( ( G `  m )  e.  RR  /\  -u 1  <_  ( G `  m
)  /\  ( G `  m )  <_  1
) )
148146, 147sylib 208 . . . . . . . . 9  |-  ( ( ( ph  /\  m  e.  NN )  /\  x  e.  ( T `  m
) )  ->  (
( G `  m
)  e.  RR  /\  -u 1  <_  ( G `  m )  /\  ( G `  m )  <_  1 ) )
149148simp2d 1074 . . . . . . . 8  |-  ( ( ( ph  /\  m  e.  NN )  /\  x  e.  ( T `  m
) )  ->  -u 1  <_  ( G `  m
) )
15027ad2antrr 762 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  m  e.  NN )  /\  x  e.  ( T `  m
) )  ->  ran  F 
C_  ( 0 [,] 1 ) )
151134simprd 479 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  m  e.  NN )  /\  x  e.  ( T `  m
) )  ->  (
x  -  ( G `
 m ) )  e.  ran  F )
152150, 151sseldd 3604 . . . . . . . . . . 11  |-  ( ( ( ph  /\  m  e.  NN )  /\  x  e.  ( T `  m
) )  ->  (
x  -  ( G `
 m ) )  e.  ( 0 [,] 1 ) )
15358, 59elicc2i 12239 . . . . . . . . . . 11  |-  ( ( x  -  ( G `
 m ) )  e.  ( 0 [,] 1 )  <->  ( (
x  -  ( G `
 m ) )  e.  RR  /\  0  <_  ( x  -  ( G `  m )
)  /\  ( x  -  ( G `  m ) )  <_ 
1 ) )
154152, 153sylib 208 . . . . . . . . . 10  |-  ( ( ( ph  /\  m  e.  NN )  /\  x  e.  ( T `  m
) )  ->  (
( x  -  ( G `  m )
)  e.  RR  /\  0  <_  ( x  -  ( G `  m ) )  /\  ( x  -  ( G `  m ) )  <_ 
1 ) )
155154simp2d 1074 . . . . . . . . 9  |-  ( ( ( ph  /\  m  e.  NN )  /\  x  e.  ( T `  m
) )  ->  0  <_  ( x  -  ( G `  m )
) )
156135, 145subge0d 10617 . . . . . . . . 9  |-  ( ( ( ph  /\  m  e.  NN )  /\  x  e.  ( T `  m
) )  ->  (
0  <_  ( x  -  ( G `  m ) )  <->  ( G `  m )  <_  x
) )
157155, 156mpbid 222 . . . . . . . 8  |-  ( ( ( ph  /\  m  e.  NN )  /\  x  e.  ( T `  m
) )  ->  ( G `  m )  <_  x )
158136, 145, 135, 149, 157letrd 10194 . . . . . . 7  |-  ( ( ( ph  /\  m  e.  NN )  /\  x  e.  ( T `  m
) )  ->  -u 1  <_  x )
159 peano2re 10209 . . . . . . . . 9  |-  ( ( G `  m )  e.  RR  ->  (
( G `  m
)  +  1 )  e.  RR )
160145, 159syl 17 . . . . . . . 8  |-  ( ( ( ph  /\  m  e.  NN )  /\  x  e.  ( T `  m
) )  ->  (
( G `  m
)  +  1 )  e.  RR )
161 2re 11090 . . . . . . . . 9  |-  2  e.  RR
162161a1i 11 . . . . . . . 8  |-  ( ( ( ph  /\  m  e.  NN )  /\  x  e.  ( T `  m
) )  ->  2  e.  RR )
163154simp3d 1075 . . . . . . . . 9  |-  ( ( ( ph  /\  m  e.  NN )  /\  x  e.  ( T `  m
) )  ->  (
x  -  ( G `
 m ) )  <_  1 )
164 1red 10055 . . . . . . . . . 10  |-  ( ( ( ph  /\  m  e.  NN )  /\  x  e.  ( T `  m
) )  ->  1  e.  RR )
165135, 145, 164lesubadd2d 10626 . . . . . . . . 9  |-  ( ( ( ph  /\  m  e.  NN )  /\  x  e.  ( T `  m
) )  ->  (
( x  -  ( G `  m )
)  <_  1  <->  x  <_  ( ( G `  m
)  +  1 ) ) )
166163, 165mpbid 222 . . . . . . . 8  |-  ( ( ( ph  /\  m  e.  NN )  /\  x  e.  ( T `  m
) )  ->  x  <_  ( ( G `  m )  +  1 ) )
167148simp3d 1075 . . . . . . . . . 10  |-  ( ( ( ph  /\  m  e.  NN )  /\  x  e.  ( T `  m
) )  ->  ( G `  m )  <_  1 )
168145, 164, 164, 167leadd1dd 10641 . . . . . . . . 9  |-  ( ( ( ph  /\  m  e.  NN )  /\  x  e.  ( T `  m
) )  ->  (
( G `  m
)  +  1 )  <_  ( 1  +  1 ) )
169 df-2 11079 . . . . . . . . 9  |-  2  =  ( 1  +  1 )
170168, 169syl6breqr 4695 . . . . . . . 8  |-  ( ( ( ph  /\  m  e.  NN )  /\  x  e.  ( T `  m
) )  ->  (
( G `  m
)  +  1 )  <_  2 )
171135, 160, 162, 166, 170letrd 10194 . . . . . . 7  |-  ( ( ( ph  /\  m  e.  NN )  /\  x  e.  ( T `  m
) )  ->  x  <_  2 )
17287, 161elicc2i 12239 . . . . . . 7  |-  ( x  e.  ( -u 1 [,] 2 )  <->  ( x  e.  RR  /\  -u 1  <_  x  /\  x  <_ 
2 ) )
173135, 158, 171, 172syl3anbrc 1246 . . . . . 6  |-  ( ( ( ph  /\  m  e.  NN )  /\  x  e.  ( T `  m
) )  ->  x  e.  ( -u 1 [,] 2 ) )
174173ex 450 . . . . 5  |-  ( (
ph  /\  m  e.  NN )  ->  ( x  e.  ( T `  m )  ->  x  e.  ( -u 1 [,] 2 ) ) )
175174rexlimdva 3031 . . . 4  |-  ( ph  ->  ( E. m  e.  NN  x  e.  ( T `  m )  ->  x  e.  (
-u 1 [,] 2
) ) )
176121, 175syl5bi 232 . . 3  |-  ( ph  ->  ( x  e.  U_ m  e.  NN  ( T `  m )  ->  x  e.  ( -u
1 [,] 2 ) ) )
177176ssrdv 3609 . 2  |-  ( ph  ->  U_ m  e.  NN  ( T `  m ) 
C_  ( -u 1 [,] 2 ) )
17827, 120, 1773jca 1242 1  |-  ( ph  ->  ( ran  F  C_  ( 0 [,] 1
)  /\  ( 0 [,] 1 )  C_  U_ m  e.  NN  ( T `  m )  /\  U_ m  e.  NN  ( T `  m ) 
C_  ( -u 1 [,] 2 ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   {crab 2916   _Vcvv 3200    \ cdif 3571    i^i cin 3573    C_ wss 3574   (/)c0 3915   ~Pcpw 4158   U_ciun 4520   class class class wbr 4653   {copab 4712    |-> cmpt 4729   `'ccnv 5113   dom cdm 5114   ran crn 5115    Fn wfn 5883   -->wf 5884   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650    Er wer 7739   [cec 7740   /.cqs 7741   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    <_ cle 10075    - cmin 10266   -ucneg 10267   NNcn 11020   2c2 11070   QQcq 11788   [,]cicc 12178   volcvol 23232
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-ec 7744  df-qs 7748  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-q 11789  df-icc 12182
This theorem is referenced by:  vitalilem3  23379  vitalilem4  23380  vitalilem5  23381
  Copyright terms: Public domain W3C validator