| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > intsal | Structured version Visualization version Unicode version | ||
| Description: The arbitrary
intersection of sigma-algebra (on the same set |
| Ref | Expression |
|---|---|
| intsal.ga |
|
| intsal.gn0 |
|
| intsal.x |
|
| Ref | Expression |
|---|---|
| intsal |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 473 |
. . . . . 6
| |
| 2 | intsal.ga |
. . . . . . 7
| |
| 3 | 2 | sselda 3603 |
. . . . . 6
|
| 4 | simpr 477 |
. . . . . . 7
| |
| 5 | 0sal 40540 |
. . . . . . 7
| |
| 6 | 4, 5 | syl 17 |
. . . . . 6
|
| 7 | 1, 3, 6 | syl2anc 693 |
. . . . 5
|
| 8 | 7 | ralrimiva 2966 |
. . . 4
|
| 9 | 0ex 4790 |
. . . . 5
| |
| 10 | 9 | elint2 4482 |
. . . 4
|
| 11 | 8, 10 | sylibr 224 |
. . 3
|
| 12 | intsal.x |
. . . . . . . . . 10
| |
| 13 | intsal.gn0 |
. . . . . . . . . . . . 13
| |
| 14 | 2, 13, 12 | intsaluni 40547 |
. . . . . . . . . . . 12
|
| 15 | 14 | eqcomd 2628 |
. . . . . . . . . . 11
|
| 16 | 15 | adantr 481 |
. . . . . . . . . 10
|
| 17 | 12, 16 | eqtr2d 2657 |
. . . . . . . . 9
|
| 18 | 17 | difeq1d 3727 |
. . . . . . . 8
|
| 19 | 18 | adantlr 751 |
. . . . . . 7
|
| 20 | 3 | adantlr 751 |
. . . . . . . 8
|
| 21 | elinti 4485 |
. . . . . . . . . 10
| |
| 22 | 21 | imp 445 |
. . . . . . . . 9
|
| 23 | 22 | adantll 750 |
. . . . . . . 8
|
| 24 | saldifcl 40539 |
. . . . . . . 8
| |
| 25 | 20, 23, 24 | syl2anc 693 |
. . . . . . 7
|
| 26 | 19, 25 | eqeltrd 2701 |
. . . . . 6
|
| 27 | 26 | ralrimiva 2966 |
. . . . 5
|
| 28 | intex 4820 |
. . . . . . . . . . 11
| |
| 29 | 28 | biimpi 206 |
. . . . . . . . . 10
|
| 30 | 13, 29 | syl 17 |
. . . . . . . . 9
|
| 31 | uniexg 6955 |
. . . . . . . . 9
| |
| 32 | 30, 31 | syl 17 |
. . . . . . . 8
|
| 33 | difexg 4808 |
. . . . . . . 8
| |
| 34 | 32, 33 | syl 17 |
. . . . . . 7
|
| 35 | 34 | adantr 481 |
. . . . . 6
|
| 36 | elintg 4483 |
. . . . . 6
| |
| 37 | 35, 36 | syl 17 |
. . . . 5
|
| 38 | 27, 37 | mpbird 247 |
. . . 4
|
| 39 | 38 | ralrimiva 2966 |
. . 3
|
| 40 | 3 | ad4ant14 1293 |
. . . . . . . 8
|
| 41 | elpwi 4168 |
. . . . . . . . . . . . 13
| |
| 42 | 41 | adantr 481 |
. . . . . . . . . . . 12
|
| 43 | intss1 4492 |
. . . . . . . . . . . . 13
| |
| 44 | 43 | adantl 482 |
. . . . . . . . . . . 12
|
| 45 | 42, 44 | sstrd 3613 |
. . . . . . . . . . 11
|
| 46 | vex 3203 |
. . . . . . . . . . . 12
| |
| 47 | 46 | elpw 4164 |
. . . . . . . . . . 11
|
| 48 | 45, 47 | sylibr 224 |
. . . . . . . . . 10
|
| 49 | 48 | adantll 750 |
. . . . . . . . 9
|
| 50 | 49 | adantlr 751 |
. . . . . . . 8
|
| 51 | simplr 792 |
. . . . . . . 8
| |
| 52 | 40, 50, 51 | salunicl 40536 |
. . . . . . 7
|
| 53 | 52 | ralrimiva 2966 |
. . . . . 6
|
| 54 | vuniex 6954 |
. . . . . . . 8
| |
| 55 | 54 | a1i 11 |
. . . . . . 7
|
| 56 | elintg 4483 |
. . . . . . 7
| |
| 57 | 55, 56 | syl 17 |
. . . . . 6
|
| 58 | 53, 57 | mpbird 247 |
. . . . 5
|
| 59 | 58 | ex 450 |
. . . 4
|
| 60 | 59 | ralrimiva 2966 |
. . 3
|
| 61 | 11, 39, 60 | 3jca 1242 |
. 2
|
| 62 | issal 40534 |
. . 3
| |
| 63 | 30, 62 | syl 17 |
. 2
|
| 64 | 61, 63 | mpbird 247 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-int 4476 df-br 4654 df-salg 40529 |
| This theorem is referenced by: salgencl 40550 |
| Copyright terms: Public domain | W3C validator |