MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elkgen Structured version   Visualization version   Unicode version

Theorem elkgen 21339
Description: Value of the compact generator. (Contributed by Mario Carneiro, 20-Mar-2015.)
Assertion
Ref Expression
elkgen  |-  ( J  e.  (TopOn `  X
)  ->  ( A  e.  (𝑘Gen `  J )  <->  ( A  C_  X  /\  A. k  e.  ~P  X ( ( Jt  k )  e.  Comp  -> 
( A  i^i  k
)  e.  ( Jt  k ) ) ) ) )
Distinct variable groups:    A, k    k, J    k, X

Proof of Theorem elkgen
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 kgenval 21338 . . 3  |-  ( J  e.  (TopOn `  X
)  ->  (𝑘Gen `  J
)  =  { x  e.  ~P X  |  A. k  e.  ~P  X
( ( Jt  k )  e.  Comp  ->  ( x  i^i  k )  e.  ( Jt  k ) ) } )
21eleq2d 2687 . 2  |-  ( J  e.  (TopOn `  X
)  ->  ( A  e.  (𝑘Gen `  J )  <->  A  e.  { x  e.  ~P X  |  A. k  e.  ~P  X ( ( Jt  k )  e.  Comp  ->  ( x  i^i  k )  e.  ( Jt  k ) ) } ) )
3 ineq1 3807 . . . . . . 7  |-  ( x  =  A  ->  (
x  i^i  k )  =  ( A  i^i  k ) )
43eleq1d 2686 . . . . . 6  |-  ( x  =  A  ->  (
( x  i^i  k
)  e.  ( Jt  k )  <->  ( A  i^i  k )  e.  ( Jt  k ) ) )
54imbi2d 330 . . . . 5  |-  ( x  =  A  ->  (
( ( Jt  k )  e.  Comp  ->  ( x  i^i  k )  e.  ( Jt  k ) )  <-> 
( ( Jt  k )  e.  Comp  ->  ( A  i^i  k )  e.  ( Jt  k ) ) ) )
65ralbidv 2986 . . . 4  |-  ( x  =  A  ->  ( A. k  e.  ~P  X ( ( Jt  k )  e.  Comp  ->  ( x  i^i  k )  e.  ( Jt  k ) )  <->  A. k  e.  ~P  X ( ( Jt  k )  e.  Comp  ->  ( A  i^i  k )  e.  ( Jt  k ) ) ) )
76elrab 3363 . . 3  |-  ( A  e.  { x  e. 
~P X  |  A. k  e.  ~P  X
( ( Jt  k )  e.  Comp  ->  ( x  i^i  k )  e.  ( Jt  k ) ) }  <->  ( A  e. 
~P X  /\  A. k  e.  ~P  X
( ( Jt  k )  e.  Comp  ->  ( A  i^i  k )  e.  ( Jt  k ) ) ) )
8 toponmax 20730 . . . . 5  |-  ( J  e.  (TopOn `  X
)  ->  X  e.  J )
9 elpw2g 4827 . . . . 5  |-  ( X  e.  J  ->  ( A  e.  ~P X  <->  A 
C_  X ) )
108, 9syl 17 . . . 4  |-  ( J  e.  (TopOn `  X
)  ->  ( A  e.  ~P X  <->  A  C_  X
) )
1110anbi1d 741 . . 3  |-  ( J  e.  (TopOn `  X
)  ->  ( ( A  e.  ~P X  /\  A. k  e.  ~P  X ( ( Jt  k )  e.  Comp  ->  ( A  i^i  k )  e.  ( Jt  k ) ) )  <->  ( A  C_  X  /\  A. k  e.  ~P  X ( ( Jt  k )  e.  Comp  -> 
( A  i^i  k
)  e.  ( Jt  k ) ) ) ) )
127, 11syl5bb 272 . 2  |-  ( J  e.  (TopOn `  X
)  ->  ( A  e.  { x  e.  ~P X  |  A. k  e.  ~P  X ( ( Jt  k )  e.  Comp  -> 
( x  i^i  k
)  e.  ( Jt  k ) ) }  <->  ( A  C_  X  /\  A. k  e.  ~P  X ( ( Jt  k )  e.  Comp  -> 
( A  i^i  k
)  e.  ( Jt  k ) ) ) ) )
132, 12bitrd 268 1  |-  ( J  e.  (TopOn `  X
)  ->  ( A  e.  (𝑘Gen `  J )  <->  ( A  C_  X  /\  A. k  e.  ~P  X ( ( Jt  k )  e.  Comp  -> 
( A  i^i  k
)  e.  ( Jt  k ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   {crab 2916    i^i cin 3573    C_ wss 3574   ~Pcpw 4158   ` cfv 5888  (class class class)co 6650   ↾t crest 16081  TopOnctopon 20715   Compccmp 21189  𝑘Genckgen 21336
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-top 20699  df-topon 20716  df-kgen 21337
This theorem is referenced by:  kgeni  21340  kgentopon  21341  kgenss  21346  kgenidm  21350  iskgen3  21352  kgen2ss  21358  kgencn  21359  kgencn3  21361  txkgen  21455
  Copyright terms: Public domain W3C validator