MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ocvlss Structured version   Visualization version   Unicode version

Theorem ocvlss 20016
Description: The orthocomplement of a subset is a linear subspace of the pre-Hilbert space. (Contributed by Mario Carneiro, 13-Oct-2015.)
Hypotheses
Ref Expression
ocvss.v  |-  V  =  ( Base `  W
)
ocvss.o  |-  ._|_  =  ( ocv `  W )
ocvlss.l  |-  L  =  ( LSubSp `  W )
Assertion
Ref Expression
ocvlss  |-  ( ( W  e.  PreHil  /\  S  C_  V )  ->  (  ._|_  `  S )  e.  L )

Proof of Theorem ocvlss
Dummy variables  x  r  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ocvss.v . . . 4  |-  V  =  ( Base `  W
)
2 ocvss.o . . . 4  |-  ._|_  =  ( ocv `  W )
31, 2ocvss 20014 . . 3  |-  (  ._|_  `  S )  C_  V
43a1i 11 . 2  |-  ( ( W  e.  PreHil  /\  S  C_  V )  ->  (  ._|_  `  S )  C_  V )
5 simpr 477 . . . 4  |-  ( ( W  e.  PreHil  /\  S  C_  V )  ->  S  C_  V )
6 phllmod 19975 . . . . . 6  |-  ( W  e.  PreHil  ->  W  e.  LMod )
76adantr 481 . . . . 5  |-  ( ( W  e.  PreHil  /\  S  C_  V )  ->  W  e.  LMod )
8 eqid 2622 . . . . . 6  |-  ( 0g
`  W )  =  ( 0g `  W
)
91, 8lmod0vcl 18892 . . . . 5  |-  ( W  e.  LMod  ->  ( 0g
`  W )  e.  V )
107, 9syl 17 . . . 4  |-  ( ( W  e.  PreHil  /\  S  C_  V )  ->  ( 0g `  W )  e.  V )
11 simpll 790 . . . . . 6  |-  ( ( ( W  e.  PreHil  /\  S  C_  V )  /\  x  e.  S
)  ->  W  e.  PreHil )
125sselda 3603 . . . . . 6  |-  ( ( ( W  e.  PreHil  /\  S  C_  V )  /\  x  e.  S
)  ->  x  e.  V )
13 eqid 2622 . . . . . . 7  |-  (Scalar `  W )  =  (Scalar `  W )
14 eqid 2622 . . . . . . 7  |-  ( .i
`  W )  =  ( .i `  W
)
15 eqid 2622 . . . . . . 7  |-  ( 0g
`  (Scalar `  W )
)  =  ( 0g
`  (Scalar `  W )
)
1613, 14, 1, 15, 8ip0l 19981 . . . . . 6  |-  ( ( W  e.  PreHil  /\  x  e.  V )  ->  (
( 0g `  W
) ( .i `  W ) x )  =  ( 0g `  (Scalar `  W ) ) )
1711, 12, 16syl2anc 693 . . . . 5  |-  ( ( ( W  e.  PreHil  /\  S  C_  V )  /\  x  e.  S
)  ->  ( ( 0g `  W ) ( .i `  W ) x )  =  ( 0g `  (Scalar `  W ) ) )
1817ralrimiva 2966 . . . 4  |-  ( ( W  e.  PreHil  /\  S  C_  V )  ->  A. x  e.  S  ( ( 0g `  W ) ( .i `  W ) x )  =  ( 0g `  (Scalar `  W ) ) )
191, 14, 13, 15, 2elocv 20012 . . . 4  |-  ( ( 0g `  W )  e.  (  ._|_  `  S
)  <->  ( S  C_  V  /\  ( 0g `  W )  e.  V  /\  A. x  e.  S  ( ( 0g `  W ) ( .i
`  W ) x )  =  ( 0g
`  (Scalar `  W )
) ) )
205, 10, 18, 19syl3anbrc 1246 . . 3  |-  ( ( W  e.  PreHil  /\  S  C_  V )  ->  ( 0g `  W )  e.  (  ._|_  `  S ) )
21 ne0i 3921 . . 3  |-  ( ( 0g `  W )  e.  (  ._|_  `  S
)  ->  (  ._|_  `  S )  =/=  (/) )
2220, 21syl 17 . 2  |-  ( ( W  e.  PreHil  /\  S  C_  V )  ->  (  ._|_  `  S )  =/=  (/) )
235adantr 481 . . . 4  |-  ( ( ( W  e.  PreHil  /\  S  C_  V )  /\  ( r  e.  (
Base `  (Scalar `  W
) )  /\  y  e.  (  ._|_  `  S
)  /\  z  e.  (  ._|_  `  S )
) )  ->  S  C_  V )
247adantr 481 . . . . 5  |-  ( ( ( W  e.  PreHil  /\  S  C_  V )  /\  ( r  e.  (
Base `  (Scalar `  W
) )  /\  y  e.  (  ._|_  `  S
)  /\  z  e.  (  ._|_  `  S )
) )  ->  W  e.  LMod )
25 simpr1 1067 . . . . . 6  |-  ( ( ( W  e.  PreHil  /\  S  C_  V )  /\  ( r  e.  (
Base `  (Scalar `  W
) )  /\  y  e.  (  ._|_  `  S
)  /\  z  e.  (  ._|_  `  S )
) )  ->  r  e.  ( Base `  (Scalar `  W ) ) )
26 simpr2 1068 . . . . . . 7  |-  ( ( ( W  e.  PreHil  /\  S  C_  V )  /\  ( r  e.  (
Base `  (Scalar `  W
) )  /\  y  e.  (  ._|_  `  S
)  /\  z  e.  (  ._|_  `  S )
) )  ->  y  e.  (  ._|_  `  S
) )
273, 26sseldi 3601 . . . . . 6  |-  ( ( ( W  e.  PreHil  /\  S  C_  V )  /\  ( r  e.  (
Base `  (Scalar `  W
) )  /\  y  e.  (  ._|_  `  S
)  /\  z  e.  (  ._|_  `  S )
) )  ->  y  e.  V )
28 eqid 2622 . . . . . . 7  |-  ( .s
`  W )  =  ( .s `  W
)
29 eqid 2622 . . . . . . 7  |-  ( Base `  (Scalar `  W )
)  =  ( Base `  (Scalar `  W )
)
301, 13, 28, 29lmodvscl 18880 . . . . . 6  |-  ( ( W  e.  LMod  /\  r  e.  ( Base `  (Scalar `  W ) )  /\  y  e.  V )  ->  ( r ( .s
`  W ) y )  e.  V )
3124, 25, 27, 30syl3anc 1326 . . . . 5  |-  ( ( ( W  e.  PreHil  /\  S  C_  V )  /\  ( r  e.  (
Base `  (Scalar `  W
) )  /\  y  e.  (  ._|_  `  S
)  /\  z  e.  (  ._|_  `  S )
) )  ->  (
r ( .s `  W ) y )  e.  V )
32 simpr3 1069 . . . . . 6  |-  ( ( ( W  e.  PreHil  /\  S  C_  V )  /\  ( r  e.  (
Base `  (Scalar `  W
) )  /\  y  e.  (  ._|_  `  S
)  /\  z  e.  (  ._|_  `  S )
) )  ->  z  e.  (  ._|_  `  S
) )
333, 32sseldi 3601 . . . . 5  |-  ( ( ( W  e.  PreHil  /\  S  C_  V )  /\  ( r  e.  (
Base `  (Scalar `  W
) )  /\  y  e.  (  ._|_  `  S
)  /\  z  e.  (  ._|_  `  S )
) )  ->  z  e.  V )
34 eqid 2622 . . . . . 6  |-  ( +g  `  W )  =  ( +g  `  W )
351, 34lmodvacl 18877 . . . . 5  |-  ( ( W  e.  LMod  /\  (
r ( .s `  W ) y )  e.  V  /\  z  e.  V )  ->  (
( r ( .s
`  W ) y ) ( +g  `  W
) z )  e.  V )
3624, 31, 33, 35syl3anc 1326 . . . 4  |-  ( ( ( W  e.  PreHil  /\  S  C_  V )  /\  ( r  e.  (
Base `  (Scalar `  W
) )  /\  y  e.  (  ._|_  `  S
)  /\  z  e.  (  ._|_  `  S )
) )  ->  (
( r ( .s
`  W ) y ) ( +g  `  W
) z )  e.  V )
3711adantlr 751 . . . . . . 7  |-  ( ( ( ( W  e. 
PreHil  /\  S  C_  V
)  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  y  e.  (  ._|_  `  S )  /\  z  e.  (  ._|_  `  S
) ) )  /\  x  e.  S )  ->  W  e.  PreHil )
3831adantr 481 . . . . . . 7  |-  ( ( ( ( W  e. 
PreHil  /\  S  C_  V
)  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  y  e.  (  ._|_  `  S )  /\  z  e.  (  ._|_  `  S
) ) )  /\  x  e.  S )  ->  ( r ( .s
`  W ) y )  e.  V )
3933adantr 481 . . . . . . 7  |-  ( ( ( ( W  e. 
PreHil  /\  S  C_  V
)  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  y  e.  (  ._|_  `  S )  /\  z  e.  (  ._|_  `  S
) ) )  /\  x  e.  S )  ->  z  e.  V )
4012adantlr 751 . . . . . . 7  |-  ( ( ( ( W  e. 
PreHil  /\  S  C_  V
)  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  y  e.  (  ._|_  `  S )  /\  z  e.  (  ._|_  `  S
) ) )  /\  x  e.  S )  ->  x  e.  V )
41 eqid 2622 . . . . . . . 8  |-  ( +g  `  (Scalar `  W )
)  =  ( +g  `  (Scalar `  W )
)
4213, 14, 1, 34, 41ipdir 19984 . . . . . . 7  |-  ( ( W  e.  PreHil  /\  (
( r ( .s
`  W ) y )  e.  V  /\  z  e.  V  /\  x  e.  V )
)  ->  ( (
( r ( .s
`  W ) y ) ( +g  `  W
) z ) ( .i `  W ) x )  =  ( ( ( r ( .s `  W ) y ) ( .i
`  W ) x ) ( +g  `  (Scalar `  W ) ) ( z ( .i `  W ) x ) ) )
4337, 38, 39, 40, 42syl13anc 1328 . . . . . 6  |-  ( ( ( ( W  e. 
PreHil  /\  S  C_  V
)  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  y  e.  (  ._|_  `  S )  /\  z  e.  (  ._|_  `  S
) ) )  /\  x  e.  S )  ->  ( ( ( r ( .s `  W
) y ) ( +g  `  W ) z ) ( .i
`  W ) x )  =  ( ( ( r ( .s
`  W ) y ) ( .i `  W ) x ) ( +g  `  (Scalar `  W ) ) ( z ( .i `  W ) x ) ) )
4425adantr 481 . . . . . . . . 9  |-  ( ( ( ( W  e. 
PreHil  /\  S  C_  V
)  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  y  e.  (  ._|_  `  S )  /\  z  e.  (  ._|_  `  S
) ) )  /\  x  e.  S )  ->  r  e.  ( Base `  (Scalar `  W )
) )
4527adantr 481 . . . . . . . . 9  |-  ( ( ( ( W  e. 
PreHil  /\  S  C_  V
)  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  y  e.  (  ._|_  `  S )  /\  z  e.  (  ._|_  `  S
) ) )  /\  x  e.  S )  ->  y  e.  V )
46 eqid 2622 . . . . . . . . . 10  |-  ( .r
`  (Scalar `  W )
)  =  ( .r
`  (Scalar `  W )
)
4713, 14, 1, 29, 28, 46ipass 19990 . . . . . . . . 9  |-  ( ( W  e.  PreHil  /\  (
r  e.  ( Base `  (Scalar `  W )
)  /\  y  e.  V  /\  x  e.  V
) )  ->  (
( r ( .s
`  W ) y ) ( .i `  W ) x )  =  ( r ( .r `  (Scalar `  W ) ) ( y ( .i `  W ) x ) ) )
4837, 44, 45, 40, 47syl13anc 1328 . . . . . . . 8  |-  ( ( ( ( W  e. 
PreHil  /\  S  C_  V
)  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  y  e.  (  ._|_  `  S )  /\  z  e.  (  ._|_  `  S
) ) )  /\  x  e.  S )  ->  ( ( r ( .s `  W ) y ) ( .i
`  W ) x )  =  ( r ( .r `  (Scalar `  W ) ) ( y ( .i `  W ) x ) ) )
491, 14, 13, 15, 2ocvi 20013 . . . . . . . . . 10  |-  ( ( y  e.  (  ._|_  `  S )  /\  x  e.  S )  ->  (
y ( .i `  W ) x )  =  ( 0g `  (Scalar `  W ) ) )
5026, 49sylan 488 . . . . . . . . 9  |-  ( ( ( ( W  e. 
PreHil  /\  S  C_  V
)  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  y  e.  (  ._|_  `  S )  /\  z  e.  (  ._|_  `  S
) ) )  /\  x  e.  S )  ->  ( y ( .i
`  W ) x )  =  ( 0g
`  (Scalar `  W )
) )
5150oveq2d 6666 . . . . . . . 8  |-  ( ( ( ( W  e. 
PreHil  /\  S  C_  V
)  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  y  e.  (  ._|_  `  S )  /\  z  e.  (  ._|_  `  S
) ) )  /\  x  e.  S )  ->  ( r ( .r
`  (Scalar `  W )
) ( y ( .i `  W ) x ) )  =  ( r ( .r
`  (Scalar `  W )
) ( 0g `  (Scalar `  W ) ) ) )
5224adantr 481 . . . . . . . . . 10  |-  ( ( ( ( W  e. 
PreHil  /\  S  C_  V
)  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  y  e.  (  ._|_  `  S )  /\  z  e.  (  ._|_  `  S
) ) )  /\  x  e.  S )  ->  W  e.  LMod )
5313lmodring 18871 . . . . . . . . . 10  |-  ( W  e.  LMod  ->  (Scalar `  W )  e.  Ring )
5452, 53syl 17 . . . . . . . . 9  |-  ( ( ( ( W  e. 
PreHil  /\  S  C_  V
)  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  y  e.  (  ._|_  `  S )  /\  z  e.  (  ._|_  `  S
) ) )  /\  x  e.  S )  ->  (Scalar `  W )  e.  Ring )
5529, 46, 15ringrz 18588 . . . . . . . . 9  |-  ( ( (Scalar `  W )  e.  Ring  /\  r  e.  ( Base `  (Scalar `  W
) ) )  -> 
( r ( .r
`  (Scalar `  W )
) ( 0g `  (Scalar `  W ) ) )  =  ( 0g
`  (Scalar `  W )
) )
5654, 44, 55syl2anc 693 . . . . . . . 8  |-  ( ( ( ( W  e. 
PreHil  /\  S  C_  V
)  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  y  e.  (  ._|_  `  S )  /\  z  e.  (  ._|_  `  S
) ) )  /\  x  e.  S )  ->  ( r ( .r
`  (Scalar `  W )
) ( 0g `  (Scalar `  W ) ) )  =  ( 0g
`  (Scalar `  W )
) )
5748, 51, 563eqtrd 2660 . . . . . . 7  |-  ( ( ( ( W  e. 
PreHil  /\  S  C_  V
)  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  y  e.  (  ._|_  `  S )  /\  z  e.  (  ._|_  `  S
) ) )  /\  x  e.  S )  ->  ( ( r ( .s `  W ) y ) ( .i
`  W ) x )  =  ( 0g
`  (Scalar `  W )
) )
581, 14, 13, 15, 2ocvi 20013 . . . . . . . 8  |-  ( ( z  e.  (  ._|_  `  S )  /\  x  e.  S )  ->  (
z ( .i `  W ) x )  =  ( 0g `  (Scalar `  W ) ) )
5932, 58sylan 488 . . . . . . 7  |-  ( ( ( ( W  e. 
PreHil  /\  S  C_  V
)  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  y  e.  (  ._|_  `  S )  /\  z  e.  (  ._|_  `  S
) ) )  /\  x  e.  S )  ->  ( z ( .i
`  W ) x )  =  ( 0g
`  (Scalar `  W )
) )
6057, 59oveq12d 6668 . . . . . 6  |-  ( ( ( ( W  e. 
PreHil  /\  S  C_  V
)  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  y  e.  (  ._|_  `  S )  /\  z  e.  (  ._|_  `  S
) ) )  /\  x  e.  S )  ->  ( ( ( r ( .s `  W
) y ) ( .i `  W ) x ) ( +g  `  (Scalar `  W )
) ( z ( .i `  W ) x ) )  =  ( ( 0g `  (Scalar `  W ) ) ( +g  `  (Scalar `  W ) ) ( 0g `  (Scalar `  W ) ) ) )
6113lmodfgrp 18872 . . . . . . 7  |-  ( W  e.  LMod  ->  (Scalar `  W )  e.  Grp )
6229, 15grpidcl 17450 . . . . . . . 8  |-  ( (Scalar `  W )  e.  Grp  ->  ( 0g `  (Scalar `  W ) )  e.  ( Base `  (Scalar `  W ) ) )
6329, 41, 15grplid 17452 . . . . . . . 8  |-  ( ( (Scalar `  W )  e.  Grp  /\  ( 0g
`  (Scalar `  W )
)  e.  ( Base `  (Scalar `  W )
) )  ->  (
( 0g `  (Scalar `  W ) ) ( +g  `  (Scalar `  W ) ) ( 0g `  (Scalar `  W ) ) )  =  ( 0g `  (Scalar `  W ) ) )
6462, 63mpdan 702 . . . . . . 7  |-  ( (Scalar `  W )  e.  Grp  ->  ( ( 0g `  (Scalar `  W ) ) ( +g  `  (Scalar `  W ) ) ( 0g `  (Scalar `  W ) ) )  =  ( 0g `  (Scalar `  W ) ) )
6552, 61, 643syl 18 . . . . . 6  |-  ( ( ( ( W  e. 
PreHil  /\  S  C_  V
)  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  y  e.  (  ._|_  `  S )  /\  z  e.  (  ._|_  `  S
) ) )  /\  x  e.  S )  ->  ( ( 0g `  (Scalar `  W ) ) ( +g  `  (Scalar `  W ) ) ( 0g `  (Scalar `  W ) ) )  =  ( 0g `  (Scalar `  W ) ) )
6643, 60, 653eqtrd 2660 . . . . 5  |-  ( ( ( ( W  e. 
PreHil  /\  S  C_  V
)  /\  ( r  e.  ( Base `  (Scalar `  W ) )  /\  y  e.  (  ._|_  `  S )  /\  z  e.  (  ._|_  `  S
) ) )  /\  x  e.  S )  ->  ( ( ( r ( .s `  W
) y ) ( +g  `  W ) z ) ( .i
`  W ) x )  =  ( 0g
`  (Scalar `  W )
) )
6766ralrimiva 2966 . . . 4  |-  ( ( ( W  e.  PreHil  /\  S  C_  V )  /\  ( r  e.  (
Base `  (Scalar `  W
) )  /\  y  e.  (  ._|_  `  S
)  /\  z  e.  (  ._|_  `  S )
) )  ->  A. x  e.  S  ( (
( r ( .s
`  W ) y ) ( +g  `  W
) z ) ( .i `  W ) x )  =  ( 0g `  (Scalar `  W ) ) )
681, 14, 13, 15, 2elocv 20012 . . . 4  |-  ( ( ( r ( .s
`  W ) y ) ( +g  `  W
) z )  e.  (  ._|_  `  S )  <-> 
( S  C_  V  /\  ( ( r ( .s `  W ) y ) ( +g  `  W ) z )  e.  V  /\  A. x  e.  S  (
( ( r ( .s `  W ) y ) ( +g  `  W ) z ) ( .i `  W
) x )  =  ( 0g `  (Scalar `  W ) ) ) )
6923, 36, 67, 68syl3anbrc 1246 . . 3  |-  ( ( ( W  e.  PreHil  /\  S  C_  V )  /\  ( r  e.  (
Base `  (Scalar `  W
) )  /\  y  e.  (  ._|_  `  S
)  /\  z  e.  (  ._|_  `  S )
) )  ->  (
( r ( .s
`  W ) y ) ( +g  `  W
) z )  e.  (  ._|_  `  S ) )
7069ralrimivvva 2972 . 2  |-  ( ( W  e.  PreHil  /\  S  C_  V )  ->  A. r  e.  ( Base `  (Scalar `  W ) ) A. y  e.  (  ._|_  `  S ) A. z  e.  (  ._|_  `  S
) ( ( r ( .s `  W
) y ) ( +g  `  W ) z )  e.  ( 
._|_  `  S ) )
71 ocvlss.l . . 3  |-  L  =  ( LSubSp `  W )
7213, 29, 1, 34, 28, 71islss 18935 . 2  |-  ( ( 
._|_  `  S )  e.  L  <->  ( (  ._|_  `  S )  C_  V  /\  (  ._|_  `  S
)  =/=  (/)  /\  A. r  e.  ( Base `  (Scalar `  W )
) A. y  e.  (  ._|_  `  S ) A. z  e.  ( 
._|_  `  S ) ( ( r ( .s
`  W ) y ) ( +g  `  W
) z )  e.  (  ._|_  `  S ) ) )
734, 22, 70, 72syl3anbrc 1246 1  |-  ( ( W  e.  PreHil  /\  S  C_  V )  ->  (  ._|_  `  S )  e.  L )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912    C_ wss 3574   (/)c0 3915   ` cfv 5888  (class class class)co 6650   Basecbs 15857   +g cplusg 15941   .rcmulr 15942  Scalarcsca 15944   .scvsca 15945   .icip 15946   0gc0g 16100   Grpcgrp 17422   Ringcrg 18547   LModclmod 18863   LSubSpclss 18932   PreHilcphl 19969   ocvcocv 20004
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-plusg 15954  df-sca 15957  df-vsca 15958  df-ip 15959  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-ghm 17658  df-mgp 18490  df-ring 18549  df-lmod 18865  df-lss 18933  df-lmhm 19022  df-lvec 19103  df-sra 19172  df-rgmod 19173  df-phl 19971  df-ocv 20007
This theorem is referenced by:  ocvin  20018  ocvlsp  20020  csslss  20035  pjdm2  20055  pjff  20056  pjf2  20058  pjfo  20059  ocvpj  20061  pjthlem2  23209  pjth  23210
  Copyright terms: Public domain W3C validator