MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clsocv Structured version   Visualization version   Unicode version

Theorem clsocv 23049
Description: The orthogonal complement of the closure of a subset is the same as the orthogonal complement of the subset itself. (Contributed by Mario Carneiro, 13-Oct-2015.)
Hypotheses
Ref Expression
clsocv.v  |-  V  =  ( Base `  W
)
clsocv.o  |-  O  =  ( ocv `  W
)
clsocv.j  |-  J  =  ( TopOpen `  W )
Assertion
Ref Expression
clsocv  |-  ( ( W  e.  CPreHil  /\  S  C_  V )  ->  ( O `  ( ( cls `  J ) `  S ) )  =  ( O `  S
) )

Proof of Theorem clsocv
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cphngp 22973 . . . . . . . 8  |-  ( W  e.  CPreHil  ->  W  e. NrmGrp )
2 ngptps 22406 . . . . . . . 8  |-  ( W  e. NrmGrp  ->  W  e.  TopSp )
31, 2syl 17 . . . . . . 7  |-  ( W  e.  CPreHil  ->  W  e.  TopSp )
43adantr 481 . . . . . 6  |-  ( ( W  e.  CPreHil  /\  S  C_  V )  ->  W  e.  TopSp )
5 clsocv.v . . . . . . 7  |-  V  =  ( Base `  W
)
6 clsocv.j . . . . . . 7  |-  J  =  ( TopOpen `  W )
75, 6istps 20738 . . . . . 6  |-  ( W  e.  TopSp 
<->  J  e.  (TopOn `  V ) )
84, 7sylib 208 . . . . 5  |-  ( ( W  e.  CPreHil  /\  S  C_  V )  ->  J  e.  (TopOn `  V )
)
9 topontop 20718 . . . . 5  |-  ( J  e.  (TopOn `  V
)  ->  J  e.  Top )
108, 9syl 17 . . . 4  |-  ( ( W  e.  CPreHil  /\  S  C_  V )  ->  J  e.  Top )
11 simpr 477 . . . . 5  |-  ( ( W  e.  CPreHil  /\  S  C_  V )  ->  S  C_  V )
12 toponuni 20719 . . . . . 6  |-  ( J  e.  (TopOn `  V
)  ->  V  =  U. J )
138, 12syl 17 . . . . 5  |-  ( ( W  e.  CPreHil  /\  S  C_  V )  ->  V  =  U. J )
1411, 13sseqtrd 3641 . . . 4  |-  ( ( W  e.  CPreHil  /\  S  C_  V )  ->  S  C_ 
U. J )
15 eqid 2622 . . . . 5  |-  U. J  =  U. J
1615sscls 20860 . . . 4  |-  ( ( J  e.  Top  /\  S  C_  U. J )  ->  S  C_  (
( cls `  J
) `  S )
)
1710, 14, 16syl2anc 693 . . 3  |-  ( ( W  e.  CPreHil  /\  S  C_  V )  ->  S  C_  ( ( cls `  J
) `  S )
)
18 clsocv.o . . . 4  |-  O  =  ( ocv `  W
)
1918ocv2ss 20017 . . 3  |-  ( S 
C_  ( ( cls `  J ) `  S
)  ->  ( O `  ( ( cls `  J
) `  S )
)  C_  ( O `  S ) )
2017, 19syl 17 . 2  |-  ( ( W  e.  CPreHil  /\  S  C_  V )  ->  ( O `  ( ( cls `  J ) `  S ) )  C_  ( O `  S ) )
2115clsss3 20863 . . . . . . . 8  |-  ( ( J  e.  Top  /\  S  C_  U. J )  ->  ( ( cls `  J ) `  S
)  C_  U. J )
2210, 14, 21syl2anc 693 . . . . . . 7  |-  ( ( W  e.  CPreHil  /\  S  C_  V )  ->  (
( cls `  J
) `  S )  C_ 
U. J )
2322, 13sseqtr4d 3642 . . . . . 6  |-  ( ( W  e.  CPreHil  /\  S  C_  V )  ->  (
( cls `  J
) `  S )  C_  V )
2423adantr 481 . . . . 5  |-  ( ( ( W  e.  CPreHil  /\  S  C_  V )  /\  x  e.  ( O `  S ) )  -> 
( ( cls `  J
) `  S )  C_  V )
255, 18ocvss 20014 . . . . . . 7  |-  ( O `
 S )  C_  V
2625a1i 11 . . . . . 6  |-  ( ( W  e.  CPreHil  /\  S  C_  V )  ->  ( O `  S )  C_  V )
2726sselda 3603 . . . . 5  |-  ( ( ( W  e.  CPreHil  /\  S  C_  V )  /\  x  e.  ( O `  S ) )  ->  x  e.  V )
28 df-ss 3588 . . . . . . . . . . . 12  |-  ( ( ( cls `  J
) `  S )  C_  V  <->  ( ( ( cls `  J ) `
 S )  i^i 
V )  =  ( ( cls `  J
) `  S )
)
2924, 28sylib 208 . . . . . . . . . . 11  |-  ( ( ( W  e.  CPreHil  /\  S  C_  V )  /\  x  e.  ( O `  S ) )  -> 
( ( ( cls `  J ) `  S
)  i^i  V )  =  ( ( cls `  J ) `  S
) )
3029ineq1d 3813 . . . . . . . . . 10  |-  ( ( ( W  e.  CPreHil  /\  S  C_  V )  /\  x  e.  ( O `  S ) )  -> 
( ( ( ( cls `  J ) `
 S )  i^i 
V )  i^i  {
y  |  ( x ( .i `  W
) y )  =  ( 0g `  (Scalar `  W ) ) } )  =  ( ( ( cls `  J
) `  S )  i^i  { y  |  ( x ( .i `  W ) y )  =  ( 0g `  (Scalar `  W ) ) } ) )
31 dfrab3 3902 . . . . . . . . . . . 12  |-  { y  e.  V  |  ( x ( .i `  W ) y )  =  ( 0g `  (Scalar `  W ) ) }  =  ( V  i^i  { y  |  ( x ( .i
`  W ) y )  =  ( 0g
`  (Scalar `  W )
) } )
3231ineq2i 3811 . . . . . . . . . . 11  |-  ( ( ( cls `  J
) `  S )  i^i  { y  e.  V  |  ( x ( .i `  W ) y )  =  ( 0g `  (Scalar `  W ) ) } )  =  ( ( ( cls `  J
) `  S )  i^i  ( V  i^i  {
y  |  ( x ( .i `  W
) y )  =  ( 0g `  (Scalar `  W ) ) } ) )
33 inass 3823 . . . . . . . . . . 11  |-  ( ( ( ( cls `  J
) `  S )  i^i  V )  i^i  {
y  |  ( x ( .i `  W
) y )  =  ( 0g `  (Scalar `  W ) ) } )  =  ( ( ( cls `  J
) `  S )  i^i  ( V  i^i  {
y  |  ( x ( .i `  W
) y )  =  ( 0g `  (Scalar `  W ) ) } ) )
3432, 33eqtr4i 2647 . . . . . . . . . 10  |-  ( ( ( cls `  J
) `  S )  i^i  { y  e.  V  |  ( x ( .i `  W ) y )  =  ( 0g `  (Scalar `  W ) ) } )  =  ( ( ( ( cls `  J
) `  S )  i^i  V )  i^i  {
y  |  ( x ( .i `  W
) y )  =  ( 0g `  (Scalar `  W ) ) } )
35 dfrab3 3902 . . . . . . . . . 10  |-  { y  e.  ( ( cls `  J ) `  S
)  |  ( x ( .i `  W
) y )  =  ( 0g `  (Scalar `  W ) ) }  =  ( ( ( cls `  J ) `
 S )  i^i 
{ y  |  ( x ( .i `  W ) y )  =  ( 0g `  (Scalar `  W ) ) } )
3630, 34, 353eqtr4g 2681 . . . . . . . . 9  |-  ( ( ( W  e.  CPreHil  /\  S  C_  V )  /\  x  e.  ( O `  S ) )  -> 
( ( ( cls `  J ) `  S
)  i^i  { y  e.  V  |  (
x ( .i `  W ) y )  =  ( 0g `  (Scalar `  W ) ) } )  =  {
y  e.  ( ( cls `  J ) `
 S )  |  ( x ( .i
`  W ) y )  =  ( 0g
`  (Scalar `  W )
) } )
3715clscld 20851 . . . . . . . . . . . 12  |-  ( ( J  e.  Top  /\  S  C_  U. J )  ->  ( ( cls `  J ) `  S
)  e.  ( Clsd `  J ) )
3810, 14, 37syl2anc 693 . . . . . . . . . . 11  |-  ( ( W  e.  CPreHil  /\  S  C_  V )  ->  (
( cls `  J
) `  S )  e.  ( Clsd `  J
) )
3938adantr 481 . . . . . . . . . 10  |-  ( ( ( W  e.  CPreHil  /\  S  C_  V )  /\  x  e.  ( O `  S ) )  -> 
( ( cls `  J
) `  S )  e.  ( Clsd `  J
) )
40 fvex 6201 . . . . . . . . . . . 12  |-  ( 0g
`  (Scalar `  W )
)  e.  _V
41 eqid 2622 . . . . . . . . . . . . 13  |-  ( y  e.  V  |->  ( x ( .i `  W
) y ) )  =  ( y  e.  V  |->  ( x ( .i `  W ) y ) )
4241mptiniseg 5629 . . . . . . . . . . . 12  |-  ( ( 0g `  (Scalar `  W ) )  e. 
_V  ->  ( `' ( y  e.  V  |->  ( x ( .i `  W ) y ) ) " { ( 0g `  (Scalar `  W ) ) } )  =  { y  e.  V  |  ( x ( .i `  W ) y )  =  ( 0g `  (Scalar `  W ) ) } )
4340, 42ax-mp 5 . . . . . . . . . . 11  |-  ( `' ( y  e.  V  |->  ( x ( .i
`  W ) y ) ) " {
( 0g `  (Scalar `  W ) ) } )  =  { y  e.  V  |  ( x ( .i `  W ) y )  =  ( 0g `  (Scalar `  W ) ) }
44 eqid 2622 . . . . . . . . . . . . 13  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
45 eqid 2622 . . . . . . . . . . . . 13  |-  ( .i
`  W )  =  ( .i `  W
)
46 simpll 790 . . . . . . . . . . . . 13  |-  ( ( ( W  e.  CPreHil  /\  S  C_  V )  /\  x  e.  ( O `  S ) )  ->  W  e.  CPreHil )
478adantr 481 . . . . . . . . . . . . 13  |-  ( ( ( W  e.  CPreHil  /\  S  C_  V )  /\  x  e.  ( O `  S ) )  ->  J  e.  (TopOn `  V
) )
4847, 47, 27cnmptc 21465 . . . . . . . . . . . . 13  |-  ( ( ( W  e.  CPreHil  /\  S  C_  V )  /\  x  e.  ( O `  S ) )  -> 
( y  e.  V  |->  x )  e.  ( J  Cn  J ) )
4947cnmptid 21464 . . . . . . . . . . . . 13  |-  ( ( ( W  e.  CPreHil  /\  S  C_  V )  /\  x  e.  ( O `  S ) )  -> 
( y  e.  V  |->  y )  e.  ( J  Cn  J ) )
506, 44, 45, 46, 47, 48, 49cnmpt1ip 23046 . . . . . . . . . . . 12  |-  ( ( ( W  e.  CPreHil  /\  S  C_  V )  /\  x  e.  ( O `  S ) )  -> 
( y  e.  V  |->  ( x ( .i
`  W ) y ) )  e.  ( J  Cn  ( TopOpen ` fld )
) )
5144cnfldhaus 22588 . . . . . . . . . . . . 13  |-  ( TopOpen ` fld )  e.  Haus
52 cphclm 22989 . . . . . . . . . . . . . . . 16  |-  ( W  e.  CPreHil  ->  W  e. CMod )
53 eqid 2622 . . . . . . . . . . . . . . . . 17  |-  (Scalar `  W )  =  (Scalar `  W )
5453clm0 22872 . . . . . . . . . . . . . . . 16  |-  ( W  e. CMod  ->  0  =  ( 0g `  (Scalar `  W ) ) )
5552, 54syl 17 . . . . . . . . . . . . . . 15  |-  ( W  e.  CPreHil  ->  0  =  ( 0g `  (Scalar `  W ) ) )
5655ad2antrr 762 . . . . . . . . . . . . . 14  |-  ( ( ( W  e.  CPreHil  /\  S  C_  V )  /\  x  e.  ( O `  S ) )  -> 
0  =  ( 0g
`  (Scalar `  W )
) )
57 0cn 10032 . . . . . . . . . . . . . 14  |-  0  e.  CC
5856, 57syl6eqelr 2710 . . . . . . . . . . . . 13  |-  ( ( ( W  e.  CPreHil  /\  S  C_  V )  /\  x  e.  ( O `  S ) )  -> 
( 0g `  (Scalar `  W ) )  e.  CC )
5944cnfldtopon 22586 . . . . . . . . . . . . . . 15  |-  ( TopOpen ` fld )  e.  (TopOn `  CC )
6059toponunii 20721 . . . . . . . . . . . . . 14  |-  CC  =  U. ( TopOpen ` fld )
6160sncld 21175 . . . . . . . . . . . . 13  |-  ( ( ( TopOpen ` fld )  e.  Haus  /\  ( 0g `  (Scalar `  W ) )  e.  CC )  ->  { ( 0g `  (Scalar `  W ) ) }  e.  ( Clsd `  ( TopOpen
` fld
) ) )
6251, 58, 61sylancr 695 . . . . . . . . . . . 12  |-  ( ( ( W  e.  CPreHil  /\  S  C_  V )  /\  x  e.  ( O `  S ) )  ->  { ( 0g `  (Scalar `  W ) ) }  e.  ( Clsd `  ( TopOpen ` fld ) ) )
63 cnclima 21072 . . . . . . . . . . . 12  |-  ( ( ( y  e.  V  |->  ( x ( .i
`  W ) y ) )  e.  ( J  Cn  ( TopOpen ` fld )
)  /\  { ( 0g `  (Scalar `  W
) ) }  e.  ( Clsd `  ( TopOpen ` fld ) ) )  -> 
( `' ( y  e.  V  |->  ( x ( .i `  W
) y ) )
" { ( 0g
`  (Scalar `  W )
) } )  e.  ( Clsd `  J
) )
6450, 62, 63syl2anc 693 . . . . . . . . . . 11  |-  ( ( ( W  e.  CPreHil  /\  S  C_  V )  /\  x  e.  ( O `  S ) )  -> 
( `' ( y  e.  V  |->  ( x ( .i `  W
) y ) )
" { ( 0g
`  (Scalar `  W )
) } )  e.  ( Clsd `  J
) )
6543, 64syl5eqelr 2706 . . . . . . . . . 10  |-  ( ( ( W  e.  CPreHil  /\  S  C_  V )  /\  x  e.  ( O `  S ) )  ->  { y  e.  V  |  ( x ( .i `  W ) y )  =  ( 0g `  (Scalar `  W ) ) }  e.  ( Clsd `  J
) )
66 incld 20847 . . . . . . . . . 10  |-  ( ( ( ( cls `  J
) `  S )  e.  ( Clsd `  J
)  /\  { y  e.  V  |  (
x ( .i `  W ) y )  =  ( 0g `  (Scalar `  W ) ) }  e.  ( Clsd `  J ) )  -> 
( ( ( cls `  J ) `  S
)  i^i  { y  e.  V  |  (
x ( .i `  W ) y )  =  ( 0g `  (Scalar `  W ) ) } )  e.  (
Clsd `  J )
)
6739, 65, 66syl2anc 693 . . . . . . . . 9  |-  ( ( ( W  e.  CPreHil  /\  S  C_  V )  /\  x  e.  ( O `  S ) )  -> 
( ( ( cls `  J ) `  S
)  i^i  { y  e.  V  |  (
x ( .i `  W ) y )  =  ( 0g `  (Scalar `  W ) ) } )  e.  (
Clsd `  J )
)
6836, 67eqeltrrd 2702 . . . . . . . 8  |-  ( ( ( W  e.  CPreHil  /\  S  C_  V )  /\  x  e.  ( O `  S ) )  ->  { y  e.  ( ( cls `  J
) `  S )  |  ( x ( .i `  W ) y )  =  ( 0g `  (Scalar `  W ) ) }  e.  ( Clsd `  J
) )
6917adantr 481 . . . . . . . . 9  |-  ( ( ( W  e.  CPreHil  /\  S  C_  V )  /\  x  e.  ( O `  S ) )  ->  S  C_  ( ( cls `  J ) `  S
) )
70 eqid 2622 . . . . . . . . . . . 12  |-  ( 0g
`  (Scalar `  W )
)  =  ( 0g
`  (Scalar `  W )
)
715, 45, 53, 70, 18ocvi 20013 . . . . . . . . . . 11  |-  ( ( x  e.  ( O `
 S )  /\  y  e.  S )  ->  ( x ( .i
`  W ) y )  =  ( 0g
`  (Scalar `  W )
) )
7271ralrimiva 2966 . . . . . . . . . 10  |-  ( x  e.  ( O `  S )  ->  A. y  e.  S  ( x
( .i `  W
) y )  =  ( 0g `  (Scalar `  W ) ) )
7372adantl 482 . . . . . . . . 9  |-  ( ( ( W  e.  CPreHil  /\  S  C_  V )  /\  x  e.  ( O `  S ) )  ->  A. y  e.  S  ( x ( .i
`  W ) y )  =  ( 0g
`  (Scalar `  W )
) )
74 ssrab 3680 . . . . . . . . 9  |-  ( S 
C_  { y  e.  ( ( cls `  J
) `  S )  |  ( x ( .i `  W ) y )  =  ( 0g `  (Scalar `  W ) ) }  <-> 
( S  C_  (
( cls `  J
) `  S )  /\  A. y  e.  S  ( x ( .i
`  W ) y )  =  ( 0g
`  (Scalar `  W )
) ) )
7569, 73, 74sylanbrc 698 . . . . . . . 8  |-  ( ( ( W  e.  CPreHil  /\  S  C_  V )  /\  x  e.  ( O `  S ) )  ->  S  C_  { y  e.  ( ( cls `  J
) `  S )  |  ( x ( .i `  W ) y )  =  ( 0g `  (Scalar `  W ) ) } )
7615clsss2 20876 . . . . . . . 8  |-  ( ( { y  e.  ( ( cls `  J
) `  S )  |  ( x ( .i `  W ) y )  =  ( 0g `  (Scalar `  W ) ) }  e.  ( Clsd `  J
)  /\  S  C_  { y  e.  ( ( cls `  J ) `  S
)  |  ( x ( .i `  W
) y )  =  ( 0g `  (Scalar `  W ) ) } )  ->  ( ( cls `  J ) `  S )  C_  { y  e.  ( ( cls `  J ) `  S
)  |  ( x ( .i `  W
) y )  =  ( 0g `  (Scalar `  W ) ) } )
7768, 75, 76syl2anc 693 . . . . . . 7  |-  ( ( ( W  e.  CPreHil  /\  S  C_  V )  /\  x  e.  ( O `  S ) )  -> 
( ( cls `  J
) `  S )  C_ 
{ y  e.  ( ( cls `  J
) `  S )  |  ( x ( .i `  W ) y )  =  ( 0g `  (Scalar `  W ) ) } )
78 ssrab2 3687 . . . . . . . 8  |-  { y  e.  ( ( cls `  J ) `  S
)  |  ( x ( .i `  W
) y )  =  ( 0g `  (Scalar `  W ) ) } 
C_  ( ( cls `  J ) `  S
)
7978a1i 11 . . . . . . 7  |-  ( ( ( W  e.  CPreHil  /\  S  C_  V )  /\  x  e.  ( O `  S ) )  ->  { y  e.  ( ( cls `  J
) `  S )  |  ( x ( .i `  W ) y )  =  ( 0g `  (Scalar `  W ) ) } 
C_  ( ( cls `  J ) `  S
) )
8077, 79eqssd 3620 . . . . . 6  |-  ( ( ( W  e.  CPreHil  /\  S  C_  V )  /\  x  e.  ( O `  S ) )  -> 
( ( cls `  J
) `  S )  =  { y  e.  ( ( cls `  J
) `  S )  |  ( x ( .i `  W ) y )  =  ( 0g `  (Scalar `  W ) ) } )
81 rabid2 3118 . . . . . 6  |-  ( ( ( cls `  J
) `  S )  =  { y  e.  ( ( cls `  J
) `  S )  |  ( x ( .i `  W ) y )  =  ( 0g `  (Scalar `  W ) ) }  <->  A. y  e.  (
( cls `  J
) `  S )
( x ( .i
`  W ) y )  =  ( 0g
`  (Scalar `  W )
) )
8280, 81sylib 208 . . . . 5  |-  ( ( ( W  e.  CPreHil  /\  S  C_  V )  /\  x  e.  ( O `  S ) )  ->  A. y  e.  (
( cls `  J
) `  S )
( x ( .i
`  W ) y )  =  ( 0g
`  (Scalar `  W )
) )
835, 45, 53, 70, 18elocv 20012 . . . . 5  |-  ( x  e.  ( O `  ( ( cls `  J
) `  S )
)  <->  ( ( ( cls `  J ) `
 S )  C_  V  /\  x  e.  V  /\  A. y  e.  ( ( cls `  J
) `  S )
( x ( .i
`  W ) y )  =  ( 0g
`  (Scalar `  W )
) ) )
8424, 27, 82, 83syl3anbrc 1246 . . . 4  |-  ( ( ( W  e.  CPreHil  /\  S  C_  V )  /\  x  e.  ( O `  S ) )  ->  x  e.  ( O `  ( ( cls `  J
) `  S )
) )
8584ex 450 . . 3  |-  ( ( W  e.  CPreHil  /\  S  C_  V )  ->  (
x  e.  ( O `
 S )  ->  x  e.  ( O `  ( ( cls `  J
) `  S )
) ) )
8685ssrdv 3609 . 2  |-  ( ( W  e.  CPreHil  /\  S  C_  V )  ->  ( O `  S )  C_  ( O `  (
( cls `  J
) `  S )
) )
8720, 86eqssd 3620 1  |-  ( ( W  e.  CPreHil  /\  S  C_  V )  ->  ( O `  ( ( cls `  J ) `  S ) )  =  ( O `  S
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   {cab 2608   A.wral 2912   {crab 2916   _Vcvv 3200    i^i cin 3573    C_ wss 3574   {csn 4177   U.cuni 4436    |-> cmpt 4729   `'ccnv 5113   "cima 5117   ` cfv 5888  (class class class)co 6650   CCcc 9934   0cc0 9936   Basecbs 15857  Scalarcsca 15944   .icip 15946   TopOpenctopn 16082   0gc0g 16100  ℂfldccnfld 19746   ocvcocv 20004   Topctop 20698  TopOnctopon 20715   TopSpctps 20736   Clsdccld 20820   clsccl 20822    Cn ccn 21028   Hauscha 21112  NrmGrpcngp 22382  CModcclm 22862   CPreHilccph 22966
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-submnd 17336  df-grp 17425  df-minusg 17426  df-sbg 17427  df-mulg 17541  df-subg 17591  df-ghm 17658  df-cntz 17750  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-cring 18550  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-invr 18672  df-dvr 18683  df-rnghom 18715  df-drng 18749  df-subrg 18778  df-staf 18845  df-srng 18846  df-lmod 18865  df-lmhm 19022  df-lvec 19103  df-sra 19172  df-rgmod 19173  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-cnfld 19747  df-phl 19971  df-ipf 19972  df-ocv 20007  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-cls 20825  df-cn 21031  df-cnp 21032  df-t1 21118  df-haus 21119  df-tx 21365  df-hmeo 21558  df-xms 22125  df-ms 22126  df-tms 22127  df-nm 22387  df-ngp 22388  df-tng 22389  df-nlm 22391  df-clm 22863  df-cph 22968  df-tch 22969
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator