Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elrnmptd Structured version   Visualization version   Unicode version

Theorem elrnmptd 39366
Description: The range of a function in maps-to notation. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
elrnmptd.f  |-  F  =  ( x  e.  A  |->  B )
elrnmptd.x  |-  ( ph  ->  E. x  e.  A  C  =  B )
elrnmptd.c  |-  ( ph  ->  C  e.  V )
Assertion
Ref Expression
elrnmptd  |-  ( ph  ->  C  e.  ran  F
)
Distinct variable group:    x, C
Allowed substitution hints:    ph( x)    A( x)    B( x)    F( x)    V( x)

Proof of Theorem elrnmptd
StepHypRef Expression
1 elrnmptd.x . 2  |-  ( ph  ->  E. x  e.  A  C  =  B )
2 elrnmptd.c . . 3  |-  ( ph  ->  C  e.  V )
3 elrnmptd.f . . . 4  |-  F  =  ( x  e.  A  |->  B )
43elrnmpt 5372 . . 3  |-  ( C  e.  V  ->  ( C  e.  ran  F  <->  E. x  e.  A  C  =  B ) )
52, 4syl 17 . 2  |-  ( ph  ->  ( C  e.  ran  F  <->  E. x  e.  A  C  =  B )
)
61, 5mpbird 247 1  |-  ( ph  ->  C  e.  ran  F
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    = wceq 1483    e. wcel 1990   E.wrex 2913    |-> cmpt 4729   ran crn 5115
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-mpt 4730  df-cnv 5122  df-dm 5124  df-rn 5125
This theorem is referenced by:  infnsuprnmpt  39465  supminfrnmpt  39672  supminfxrrnmpt  39701  sge0sup  40608  sge0resplit  40623  sge0xaddlem2  40651  sge0pnfmpt  40662  sge0reuz  40664  sge0reuzb  40665  hoidmvlelem2  40810
  Copyright terms: Public domain W3C validator