Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  supminfrnmpt Structured version   Visualization version   Unicode version

Theorem supminfrnmpt 39672
Description: The indexed supremum of a bounded-above set of reals is the negation of the indexed infimum of that set's image under negation. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
supminfrnmpt.x  |-  F/ x ph
supminfrnmpt.a  |-  ( ph  ->  A  =/=  (/) )
supminfrnmpt.b  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  RR )
supminfrnmpt.y  |-  ( ph  ->  E. y  e.  RR  A. x  e.  A  B  <_  y )
Assertion
Ref Expression
supminfrnmpt  |-  ( ph  ->  sup ( ran  (
x  e.  A  |->  B ) ,  RR ,  <  )  =  -uinf ( ran  ( x  e.  A  |-> 
-u B ) ,  RR ,  <  )
)
Distinct variable groups:    x, A, y    y, B
Allowed substitution hints:    ph( x, y)    B( x)

Proof of Theorem supminfrnmpt
Dummy variables  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 supminfrnmpt.x . . . 4  |-  F/ x ph
2 eqid 2622 . . . 4  |-  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  B )
3 supminfrnmpt.b . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  RR )
41, 2, 3rnmptssd 39385 . . 3  |-  ( ph  ->  ran  ( x  e.  A  |->  B )  C_  RR )
5 supminfrnmpt.a . . . 4  |-  ( ph  ->  A  =/=  (/) )
61, 3, 2, 5rnmptn0 39413 . . 3  |-  ( ph  ->  ran  ( x  e.  A  |->  B )  =/=  (/) )
7 supminfrnmpt.y . . . 4  |-  ( ph  ->  E. y  e.  RR  A. x  e.  A  B  <_  y )
81, 3rnmptbd 39471 . . . 4  |-  ( ph  ->  ( E. y  e.  RR  A. x  e.  A  B  <_  y  <->  E. y  e.  RR  A. z  e.  ran  ( x  e.  A  |->  B ) z  <_  y )
)
97, 8mpbid 222 . . 3  |-  ( ph  ->  E. y  e.  RR  A. z  e.  ran  (
x  e.  A  |->  B ) z  <_  y
)
10 supminf 11775 . . 3  |-  ( ( ran  ( x  e.  A  |->  B )  C_  RR  /\  ran  ( x  e.  A  |->  B )  =/=  (/)  /\  E. y  e.  RR  A. z  e. 
ran  ( x  e.  A  |->  B ) z  <_  y )  ->  sup ( ran  ( x  e.  A  |->  B ) ,  RR ,  <  )  =  -uinf ( { w  e.  RR  |  -u w  e.  ran  ( x  e.  A  |->  B ) } ,  RR ,  <  ) )
114, 6, 9, 10syl3anc 1326 . 2  |-  ( ph  ->  sup ( ran  (
x  e.  A  |->  B ) ,  RR ,  <  )  =  -uinf ( { w  e.  RR  |  -u w  e.  ran  (
x  e.  A  |->  B ) } ,  RR ,  <  ) )
12 eqid 2622 . . . . . . . . 9  |-  ( x  e.  A  |->  -u B
)  =  ( x  e.  A  |->  -u B
)
13 simpr 477 . . . . . . . . . . . 12  |-  ( ( w  e.  RR  /\  -u w  e.  ran  (
x  e.  A  |->  B ) )  ->  -u w  e.  ran  ( x  e.  A  |->  B ) )
14 renegcl 10344 . . . . . . . . . . . . . 14  |-  ( w  e.  RR  ->  -u w  e.  RR )
152elrnmpt 5372 . . . . . . . . . . . . . 14  |-  ( -u w  e.  RR  ->  (
-u w  e.  ran  ( x  e.  A  |->  B )  <->  E. x  e.  A  -u w  =  B ) )
1614, 15syl 17 . . . . . . . . . . . . 13  |-  ( w  e.  RR  ->  ( -u w  e.  ran  (
x  e.  A  |->  B )  <->  E. x  e.  A  -u w  =  B ) )
1716adantr 481 . . . . . . . . . . . 12  |-  ( ( w  e.  RR  /\  -u w  e.  ran  (
x  e.  A  |->  B ) )  ->  ( -u w  e.  ran  (
x  e.  A  |->  B )  <->  E. x  e.  A  -u w  =  B ) )
1813, 17mpbid 222 . . . . . . . . . . 11  |-  ( ( w  e.  RR  /\  -u w  e.  ran  (
x  e.  A  |->  B ) )  ->  E. x  e.  A  -u w  =  B )
1918adantll 750 . . . . . . . . . 10  |-  ( ( ( ph  /\  w  e.  RR )  /\  -u w  e.  ran  ( x  e.  A  |->  B ) )  ->  E. x  e.  A  -u w  =  B )
20 nfv 1843 . . . . . . . . . . . . 13  |-  F/ x  w  e.  RR
211, 20nfan 1828 . . . . . . . . . . . 12  |-  F/ x
( ph  /\  w  e.  RR )
22 negeq 10273 . . . . . . . . . . . . . . . . . . 19  |-  ( -u w  =  B  ->  -u -u w  =  -u B
)
2322eqcomd 2628 . . . . . . . . . . . . . . . . . 18  |-  ( -u w  =  B  ->  -u B  =  -u -u w
)
2423adantl 482 . . . . . . . . . . . . . . . . 17  |-  ( ( w  e.  RR  /\  -u w  =  B )  ->  -u B  =  -u -u w )
25 recn 10026 . . . . . . . . . . . . . . . . . . 19  |-  ( w  e.  RR  ->  w  e.  CC )
2625negnegd 10383 . . . . . . . . . . . . . . . . . 18  |-  ( w  e.  RR  ->  -u -u w  =  w )
2726adantr 481 . . . . . . . . . . . . . . . . 17  |-  ( ( w  e.  RR  /\  -u w  =  B )  ->  -u -u w  =  w )
2824, 27eqtr2d 2657 . . . . . . . . . . . . . . . 16  |-  ( ( w  e.  RR  /\  -u w  =  B )  ->  w  =  -u B )
2928ex 450 . . . . . . . . . . . . . . 15  |-  ( w  e.  RR  ->  ( -u w  =  B  ->  w  =  -u B ) )
3029adantl 482 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  w  e.  RR )  ->  ( -u w  =  B  ->  w  =  -u B ) )
3130adantr 481 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  w  e.  RR )  /\  x  e.  A )  ->  ( -u w  =  B  ->  w  =  -u B ) )
32 negeq 10273 . . . . . . . . . . . . . . . . 17  |-  ( w  =  -u B  ->  -u w  =  -u -u B )
3332adantl 482 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  A )  /\  w  =  -u B )  ->  -u w  =  -u -u B
)
343recnd 10068 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  CC )
3534negnegd 10383 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  x  e.  A )  ->  -u -u B  =  B )
3635adantr 481 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  A )  /\  w  =  -u B )  ->  -u -u B  =  B
)
3733, 36eqtrd 2656 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  A )  /\  w  =  -u B )  ->  -u w  =  B )
3837ex 450 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  A )  ->  (
w  =  -u B  -> 
-u w  =  B ) )
3938adantlr 751 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  w  e.  RR )  /\  x  e.  A )  ->  (
w  =  -u B  -> 
-u w  =  B ) )
4031, 39impbid 202 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  w  e.  RR )  /\  x  e.  A )  ->  ( -u w  =  B  <->  w  =  -u B ) )
4121, 40rexbida 3047 . . . . . . . . . . 11  |-  ( (
ph  /\  w  e.  RR )  ->  ( E. x  e.  A  -u w  =  B  <->  E. x  e.  A  w  =  -u B ) )
4241adantr 481 . . . . . . . . . 10  |-  ( ( ( ph  /\  w  e.  RR )  /\  -u w  e.  ran  ( x  e.  A  |->  B ) )  ->  ( E. x  e.  A  -u w  =  B  <->  E. x  e.  A  w  =  -u B ) )
4319, 42mpbid 222 . . . . . . . . 9  |-  ( ( ( ph  /\  w  e.  RR )  /\  -u w  e.  ran  ( x  e.  A  |->  B ) )  ->  E. x  e.  A  w  =  -u B )
44 simplr 792 . . . . . . . . 9  |-  ( ( ( ph  /\  w  e.  RR )  /\  -u w  e.  ran  ( x  e.  A  |->  B ) )  ->  w  e.  RR )
4512, 43, 44elrnmptd 39366 . . . . . . . 8  |-  ( ( ( ph  /\  w  e.  RR )  /\  -u w  e.  ran  ( x  e.  A  |->  B ) )  ->  w  e.  ran  ( x  e.  A  |-> 
-u B ) )
4645ex 450 . . . . . . 7  |-  ( (
ph  /\  w  e.  RR )  ->  ( -u w  e.  ran  ( x  e.  A  |->  B )  ->  w  e.  ran  ( x  e.  A  |-> 
-u B ) ) )
4746ralrimiva 2966 . . . . . 6  |-  ( ph  ->  A. w  e.  RR  ( -u w  e.  ran  ( x  e.  A  |->  B )  ->  w  e.  ran  ( x  e.  A  |->  -u B ) ) )
48 rabss 3679 . . . . . 6  |-  ( { w  e.  RR  |  -u w  e.  ran  (
x  e.  A  |->  B ) }  C_  ran  ( x  e.  A  |-> 
-u B )  <->  A. w  e.  RR  ( -u w  e.  ran  ( x  e.  A  |->  B )  ->  w  e.  ran  ( x  e.  A  |->  -u B
) ) )
4947, 48sylibr 224 . . . . 5  |-  ( ph  ->  { w  e.  RR  |  -u w  e.  ran  ( x  e.  A  |->  B ) }  C_  ran  ( x  e.  A  |-> 
-u B ) )
50 nfcv 2764 . . . . . . . 8  |-  F/_ x -u w
51 nfmpt1 4747 . . . . . . . . 9  |-  F/_ x
( x  e.  A  |->  B )
5251nfrn 5368 . . . . . . . 8  |-  F/_ x ran  ( x  e.  A  |->  B )
5350, 52nfel 2777 . . . . . . 7  |-  F/ x -u w  e.  ran  (
x  e.  A  |->  B )
54 nfcv 2764 . . . . . . 7  |-  F/_ x RR
5553, 54nfrab 3123 . . . . . 6  |-  F/_ x { w  e.  RR  |  -u w  e.  ran  ( x  e.  A  |->  B ) }
5632eleq1d 2686 . . . . . . 7  |-  ( w  =  -u B  ->  ( -u w  e.  ran  (
x  e.  A  |->  B )  <->  -u -u B  e.  ran  ( x  e.  A  |->  B ) ) )
573renegcld 10457 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  -u B  e.  RR )
58 simpr 477 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  x  e.  A )
592elrnmpt1 5374 . . . . . . . . 9  |-  ( ( x  e.  A  /\  B  e.  RR )  ->  B  e.  ran  (
x  e.  A  |->  B ) )
6058, 3, 59syl2anc 693 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  ran  ( x  e.  A  |->  B ) )
6135, 60eqeltrd 2701 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  -u -u B  e.  ran  ( x  e.  A  |->  B ) )
6256, 57, 61elrabd 3365 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  -u B  e.  { w  e.  RR  |  -u w  e.  ran  ( x  e.  A  |->  B ) } )
631, 55, 12, 62rnmptssdf 39469 . . . . 5  |-  ( ph  ->  ran  ( x  e.  A  |->  -u B )  C_  { w  e.  RR  |  -u w  e.  ran  (
x  e.  A  |->  B ) } )
6449, 63eqssd 3620 . . . 4  |-  ( ph  ->  { w  e.  RR  |  -u w  e.  ran  ( x  e.  A  |->  B ) }  =  ran  ( x  e.  A  |-> 
-u B ) )
6564infeq1d 8383 . . 3  |-  ( ph  -> inf ( { w  e.  RR  |  -u w  e.  ran  ( x  e.  A  |->  B ) } ,  RR ,  <  )  = inf ( ran  (
x  e.  A  |->  -u B ) ,  RR ,  <  ) )
6665negeqd 10275 . 2  |-  ( ph  -> 
-uinf ( { w  e.  RR  |  -u w  e.  ran  ( x  e.  A  |->  B ) } ,  RR ,  <  )  =  -uinf ( ran  (
x  e.  A  |->  -u B ) ,  RR ,  <  ) )
6711, 66eqtrd 2656 1  |-  ( ph  ->  sup ( ran  (
x  e.  A  |->  B ) ,  RR ,  <  )  =  -uinf ( ran  ( x  e.  A  |-> 
-u B ) ,  RR ,  <  )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483   F/wnf 1708    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   {crab 2916    C_ wss 3574   (/)c0 3915   class class class wbr 4653    |-> cmpt 4729   ran crn 5115   supcsup 8346  infcinf 8347   RRcr 9935    < clt 10074    <_ cle 10075   -ucneg 10267
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator