Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0sup Structured version   Visualization version   Unicode version

Theorem sge0sup 40608
Description: The arbitrary sum of nonnegative extended reals is the supremum of finite subsums. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
sge0sup.x  |-  ( ph  ->  X  e.  V )
sge0sup.f  |-  ( ph  ->  F : X --> ( 0 [,] +oo ) )
Assertion
Ref Expression
sge0sup  |-  ( ph  ->  (Σ^ `  F )  =  sup ( ran  ( x  e.  ( ~P X  i^i  Fin )  |->  (Σ^ `  ( F  |`  x
) ) ) , 
RR* ,  <  ) )
Distinct variable groups:    x, F    x, X    ph, x
Allowed substitution hint:    V( x)

Proof of Theorem sge0sup
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 eqidd 2623 . . 3  |-  ( (
ph  /\ +oo  e.  ran  F )  -> +oo  = +oo )
2 sge0sup.x . . . . 5  |-  ( ph  ->  X  e.  V )
32adantr 481 . . . 4  |-  ( (
ph  /\ +oo  e.  ran  F )  ->  X  e.  V )
4 sge0sup.f . . . . 5  |-  ( ph  ->  F : X --> ( 0 [,] +oo ) )
54adantr 481 . . . 4  |-  ( (
ph  /\ +oo  e.  ran  F )  ->  F : X
--> ( 0 [,] +oo ) )
6 simpr 477 . . . 4  |-  ( (
ph  /\ +oo  e.  ran  F )  -> +oo  e.  ran  F )
73, 5, 6sge0pnfval 40590 . . 3  |-  ( (
ph  /\ +oo  e.  ran  F )  ->  (Σ^ `  F )  = +oo )
8 vex 3203 . . . . . . . . 9  |-  x  e. 
_V
98a1i 11 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( ~P X  i^i  Fin ) )  ->  x  e.  _V )
104adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( ~P X  i^i  Fin ) )  ->  F : X --> ( 0 [,] +oo ) )
11 elinel1 3799 . . . . . . . . . . 11  |-  ( x  e.  ( ~P X  i^i  Fin )  ->  x  e.  ~P X )
12 elpwi 4168 . . . . . . . . . . 11  |-  ( x  e.  ~P X  ->  x  C_  X )
1311, 12syl 17 . . . . . . . . . 10  |-  ( x  e.  ( ~P X  i^i  Fin )  ->  x  C_  X )
1413adantl 482 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( ~P X  i^i  Fin ) )  ->  x  C_  X )
1510, 14fssresd 6071 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( ~P X  i^i  Fin ) )  ->  ( F  |`  x ) : x --> ( 0 [,] +oo ) )
169, 15sge0xrcl 40602 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( ~P X  i^i  Fin ) )  ->  (Σ^ `  ( F  |`  x ) )  e.  RR* )
1716adantlr 751 . . . . . 6  |-  ( ( ( ph  /\ +oo  e.  ran  F )  /\  x  e.  ( ~P X  i^i  Fin ) )  ->  (Σ^ `  ( F  |`  x
) )  e.  RR* )
1817ralrimiva 2966 . . . . 5  |-  ( (
ph  /\ +oo  e.  ran  F )  ->  A. x  e.  ( ~P X  i^i  Fin ) (Σ^ `  ( F  |`  x
) )  e.  RR* )
19 eqid 2622 . . . . . 6  |-  ( x  e.  ( ~P X  i^i  Fin )  |->  (Σ^ `  ( F  |`  x
) ) )  =  ( x  e.  ( ~P X  i^i  Fin )  |->  (Σ^ `  ( F  |`  x
) ) )
2019rnmptss 6392 . . . . 5  |-  ( A. x  e.  ( ~P X  i^i  Fin ) (Σ^ `  ( F  |`  x ) )  e.  RR*  ->  ran  (
x  e.  ( ~P X  i^i  Fin )  |->  (Σ^ `  ( F  |`  x
) ) )  C_  RR* )
2118, 20syl 17 . . . 4  |-  ( (
ph  /\ +oo  e.  ran  F )  ->  ran  ( x  e.  ( ~P X  i^i  Fin )  |->  (Σ^ `  ( F  |`  x
) ) )  C_  RR* )
22 ffn 6045 . . . . . . . . 9  |-  ( F : X --> ( 0 [,] +oo )  ->  F  Fn  X )
234, 22syl 17 . . . . . . . 8  |-  ( ph  ->  F  Fn  X )
24 fvelrnb 6243 . . . . . . . 8  |-  ( F  Fn  X  ->  ( +oo  e.  ran  F  <->  E. y  e.  X  ( F `  y )  = +oo ) )
2523, 24syl 17 . . . . . . 7  |-  ( ph  ->  ( +oo  e.  ran  F  <->  E. y  e.  X  ( F `  y )  = +oo ) )
2625adantr 481 . . . . . 6  |-  ( (
ph  /\ +oo  e.  ran  F )  ->  ( +oo  e.  ran  F  <->  E. y  e.  X  ( F `  y )  = +oo ) )
276, 26mpbid 222 . . . . 5  |-  ( (
ph  /\ +oo  e.  ran  F )  ->  E. y  e.  X  ( F `  y )  = +oo )
28 snelpwi 4912 . . . . . . . . . . . 12  |-  ( y  e.  X  ->  { y }  e.  ~P X
)
29 snfi 8038 . . . . . . . . . . . . 13  |-  { y }  e.  Fin
3029a1i 11 . . . . . . . . . . . 12  |-  ( y  e.  X  ->  { y }  e.  Fin )
3128, 30elind 3798 . . . . . . . . . . 11  |-  ( y  e.  X  ->  { y }  e.  ( ~P X  i^i  Fin )
)
32313ad2ant2 1083 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  X  /\  ( F `  y )  = +oo )  ->  { y }  e.  ( ~P X  i^i  Fin ) )
33 simp2 1062 . . . . . . . . . . . 12  |-  ( (
ph  /\  y  e.  X  /\  ( F `  y )  = +oo )  ->  y  e.  X
)
3443ad2ant1 1082 . . . . . . . . . . . . 13  |-  ( (
ph  /\  y  e.  X  /\  ( F `  y )  = +oo )  ->  F : X --> ( 0 [,] +oo ) )
3533snssd 4340 . . . . . . . . . . . . 13  |-  ( (
ph  /\  y  e.  X  /\  ( F `  y )  = +oo )  ->  { y } 
C_  X )
3634, 35fssresd 6071 . . . . . . . . . . . 12  |-  ( (
ph  /\  y  e.  X  /\  ( F `  y )  = +oo )  ->  ( F  |`  { y } ) : { y } --> ( 0 [,] +oo ) )
3733, 36sge0sn 40596 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  X  /\  ( F `  y )  = +oo )  ->  (Σ^ `  ( F  |`  { y } ) )  =  ( ( F  |`  { y } ) `
 y ) )
38 vsnid 4209 . . . . . . . . . . . . 13  |-  y  e. 
{ y }
39 fvres 6207 . . . . . . . . . . . . 13  |-  ( y  e.  { y }  ->  ( ( F  |`  { y } ) `
 y )  =  ( F `  y
) )
4038, 39ax-mp 5 . . . . . . . . . . . 12  |-  ( ( F  |`  { y } ) `  y
)  =  ( F `
 y )
4140a1i 11 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  X  /\  ( F `  y )  = +oo )  ->  ( ( F  |`  { y } ) `
 y )  =  ( F `  y
) )
42 simp3 1063 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  X  /\  ( F `  y )  = +oo )  ->  ( F `  y )  = +oo )
4337, 41, 423eqtrrd 2661 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  X  /\  ( F `  y )  = +oo )  -> +oo  =  (Σ^ `  ( F  |`  { y } ) ) )
44 reseq2 5391 . . . . . . . . . . . . 13  |-  ( x  =  { y }  ->  ( F  |`  x )  =  ( F  |`  { y } ) )
4544fveq2d 6195 . . . . . . . . . . . 12  |-  ( x  =  { y }  ->  (Σ^ `  ( F  |`  x
) )  =  (Σ^ `  ( F  |`  { y } ) ) )
4645eqeq2d 2632 . . . . . . . . . . 11  |-  ( x  =  { y }  ->  ( +oo  =  (Σ^ `  ( F  |`  x ) )  <-> +oo  =  (Σ^ `  ( F  |`  { y } ) ) ) )
4746rspcev 3309 . . . . . . . . . 10  |-  ( ( { y }  e.  ( ~P X  i^i  Fin )  /\ +oo  =  (Σ^ `  ( F  |`  { y } ) ) )  ->  E. x  e.  ( ~P X  i^i  Fin ) +oo  =  (Σ^ `  ( F  |`  x
) ) )
4832, 43, 47syl2anc 693 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  X  /\  ( F `  y )  = +oo )  ->  E. x  e.  ( ~P X  i^i  Fin ) +oo  =  (Σ^ `  ( F  |`  x
) ) )
49 pnfex 10093 . . . . . . . . . 10  |- +oo  e.  _V
5049a1i 11 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  X  /\  ( F `  y )  = +oo )  -> +oo  e.  _V )
5119, 48, 50elrnmptd 39366 . . . . . . . 8  |-  ( (
ph  /\  y  e.  X  /\  ( F `  y )  = +oo )  -> +oo  e.  ran  ( x  e.  ( ~P X  i^i  Fin )  |->  (Σ^ `  ( F  |`  x
) ) ) )
52513exp 1264 . . . . . . 7  |-  ( ph  ->  ( y  e.  X  ->  ( ( F `  y )  = +oo  -> +oo  e.  ran  (
x  e.  ( ~P X  i^i  Fin )  |->  (Σ^ `  ( F  |`  x
) ) ) ) ) )
5352rexlimdv 3030 . . . . . 6  |-  ( ph  ->  ( E. y  e.  X  ( F `  y )  = +oo  -> +oo  e.  ran  (
x  e.  ( ~P X  i^i  Fin )  |->  (Σ^ `  ( F  |`  x
) ) ) ) )
5453adantr 481 . . . . 5  |-  ( (
ph  /\ +oo  e.  ran  F )  ->  ( E. y  e.  X  ( F `  y )  = +oo  -> +oo  e.  ran  ( x  e.  ( ~P X  i^i  Fin )  |->  (Σ^ `  ( F  |`  x
) ) ) ) )
5527, 54mpd 15 . . . 4  |-  ( (
ph  /\ +oo  e.  ran  F )  -> +oo  e.  ran  ( x  e.  ( ~P X  i^i  Fin )  |->  (Σ^ `  ( F  |`  x
) ) ) )
56 supxrpnf 12148 . . . 4  |-  ( ( ran  ( x  e.  ( ~P X  i^i  Fin )  |->  (Σ^ `  ( F  |`  x
) ) )  C_  RR* 
/\ +oo  e.  ran  ( x  e.  ( ~P X  i^i  Fin )  |->  (Σ^ `  ( F  |`  x
) ) ) )  ->  sup ( ran  (
x  e.  ( ~P X  i^i  Fin )  |->  (Σ^ `  ( F  |`  x
) ) ) , 
RR* ,  <  )  = +oo )
5721, 55, 56syl2anc 693 . . 3  |-  ( (
ph  /\ +oo  e.  ran  F )  ->  sup ( ran  ( x  e.  ( ~P X  i^i  Fin )  |->  (Σ^ `  ( F  |`  x
) ) ) , 
RR* ,  <  )  = +oo )
581, 7, 573eqtr4d 2666 . 2  |-  ( (
ph  /\ +oo  e.  ran  F )  ->  (Σ^ `  F )  =  sup ( ran  ( x  e.  ( ~P X  i^i  Fin )  |->  (Σ^ `  ( F  |`  x
) ) ) , 
RR* ,  <  ) )
592adantr 481 . . . 4  |-  ( (
ph  /\  -. +oo  e.  ran  F )  ->  X  e.  V )
604adantr 481 . . . . 5  |-  ( (
ph  /\  -. +oo  e.  ran  F )  ->  F : X --> ( 0 [,] +oo ) )
61 simpr 477 . . . . 5  |-  ( (
ph  /\  -. +oo  e.  ran  F )  ->  -. +oo  e.  ran  F )
6260, 61fge0iccico 40587 . . . 4  |-  ( (
ph  /\  -. +oo  e.  ran  F )  ->  F : X --> ( 0 [,) +oo ) )
6359, 62sge0reval 40589 . . 3  |-  ( (
ph  /\  -. +oo  e.  ran  F )  ->  (Σ^ `  F
)  =  sup ( ran  ( x  e.  ( ~P X  i^i  Fin )  |->  sum_ y  e.  x  ( F `  y ) ) ,  RR* ,  <  ) )
64 elinel2 3800 . . . . . . . . 9  |-  ( x  e.  ( ~P X  i^i  Fin )  ->  x  e.  Fin )
6564adantl 482 . . . . . . . 8  |-  ( ( ( ph  /\  -. +oo  e.  ran  F )  /\  x  e.  ( ~P X  i^i  Fin ) )  ->  x  e.  Fin )
6615adantlr 751 . . . . . . . . 9  |-  ( ( ( ph  /\  -. +oo  e.  ran  F )  /\  x  e.  ( ~P X  i^i  Fin ) )  ->  ( F  |`  x ) : x --> ( 0 [,] +oo ) )
67 nelrnres 39374 . . . . . . . . . 10  |-  ( -. +oo  e.  ran  F  ->  -. +oo  e.  ran  ( F  |`  x ) )
6867ad2antlr 763 . . . . . . . . 9  |-  ( ( ( ph  /\  -. +oo  e.  ran  F )  /\  x  e.  ( ~P X  i^i  Fin ) )  ->  -. +oo  e.  ran  ( F  |`  x ) )
6966, 68fge0iccico 40587 . . . . . . . 8  |-  ( ( ( ph  /\  -. +oo  e.  ran  F )  /\  x  e.  ( ~P X  i^i  Fin ) )  ->  ( F  |`  x ) : x --> ( 0 [,) +oo ) )
7065, 69sge0fsum 40604 . . . . . . 7  |-  ( ( ( ph  /\  -. +oo  e.  ran  F )  /\  x  e.  ( ~P X  i^i  Fin ) )  ->  (Σ^ `  ( F  |`  x ) )  =  sum_ y  e.  x  ( ( F  |`  x ) `  y
) )
71 simpr 477 . . . . . . . . . 10  |-  ( ( x  e.  ( ~P X  i^i  Fin )  /\  y  e.  x
)  ->  y  e.  x )
72 fvres 6207 . . . . . . . . . 10  |-  ( y  e.  x  ->  (
( F  |`  x
) `  y )  =  ( F `  y ) )
7371, 72syl 17 . . . . . . . . 9  |-  ( ( x  e.  ( ~P X  i^i  Fin )  /\  y  e.  x
)  ->  ( ( F  |`  x ) `  y )  =  ( F `  y ) )
7473sumeq2dv 14433 . . . . . . . 8  |-  ( x  e.  ( ~P X  i^i  Fin )  ->  sum_ y  e.  x  ( ( F  |`  x ) `  y )  =  sum_ y  e.  x  ( F `  y )
)
7574adantl 482 . . . . . . 7  |-  ( ( ( ph  /\  -. +oo  e.  ran  F )  /\  x  e.  ( ~P X  i^i  Fin ) )  ->  sum_ y  e.  x  ( ( F  |`  x ) `  y )  =  sum_ y  e.  x  ( F `  y )
)
7670, 75eqtrd 2656 . . . . . 6  |-  ( ( ( ph  /\  -. +oo  e.  ran  F )  /\  x  e.  ( ~P X  i^i  Fin ) )  ->  (Σ^ `  ( F  |`  x ) )  =  sum_ y  e.  x  ( F `  y ) )
7776mpteq2dva 4744 . . . . 5  |-  ( (
ph  /\  -. +oo  e.  ran  F )  ->  (
x  e.  ( ~P X  i^i  Fin )  |->  (Σ^ `  ( F  |`  x
) ) )  =  ( x  e.  ( ~P X  i^i  Fin )  |->  sum_ y  e.  x  ( F `  y ) ) )
7877rneqd 5353 . . . 4  |-  ( (
ph  /\  -. +oo  e.  ran  F )  ->  ran  ( x  e.  ( ~P X  i^i  Fin )  |->  (Σ^ `  ( F  |`  x
) ) )  =  ran  ( x  e.  ( ~P X  i^i  Fin )  |->  sum_ y  e.  x  ( F `  y ) ) )
7978supeq1d 8352 . . 3  |-  ( (
ph  /\  -. +oo  e.  ran  F )  ->  sup ( ran  ( x  e.  ( ~P X  i^i  Fin )  |->  (Σ^ `  ( F  |`  x
) ) ) , 
RR* ,  <  )  =  sup ( ran  (
x  e.  ( ~P X  i^i  Fin )  |-> 
sum_ y  e.  x  ( F `  y ) ) ,  RR* ,  <  ) )
8063, 79eqtr4d 2659 . 2  |-  ( (
ph  /\  -. +oo  e.  ran  F )  ->  (Σ^ `  F
)  =  sup ( ran  ( x  e.  ( ~P X  i^i  Fin )  |->  (Σ^ `  ( F  |`  x
) ) ) , 
RR* ,  <  ) )
8158, 80pm2.61dan 832 1  |-  ( ph  ->  (Σ^ `  F )  =  sup ( ran  ( x  e.  ( ~P X  i^i  Fin )  |->  (Σ^ `  ( F  |`  x
) ) ) , 
RR* ,  <  ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   _Vcvv 3200    i^i cin 3573    C_ wss 3574   ~Pcpw 4158   {csn 4177    |-> cmpt 4729   ran crn 5115    |` cres 5116    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650   Fincfn 7955   supcsup 8346   0cc0 9936   +oocpnf 10071   RR*cxr 10073    < clt 10074   [,]cicc 12178   sum_csu 14416  Σ^csumge0 40579
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-sumge0 40580
This theorem is referenced by:  sge0gerp  40612  sge0pnffigt  40613  sge0lefi  40615
  Copyright terms: Public domain W3C validator