Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  infnsuprnmpt Structured version   Visualization version   Unicode version

Theorem infnsuprnmpt 39465
Description: The indexed infimum of real numbers is the negative of the indexed supremum of the negative values. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
infnsuprnmpt.x  |-  F/ x ph
infnsuprnmpt.a  |-  ( ph  ->  A  =/=  (/) )
infnsuprnmpt.b  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  RR )
infnsuprnmpt.l  |-  ( ph  ->  E. y  e.  RR  A. x  e.  A  y  <_  B )
Assertion
Ref Expression
infnsuprnmpt  |-  ( ph  -> inf ( ran  ( x  e.  A  |->  B ) ,  RR ,  <  )  =  -u sup ( ran  ( x  e.  A  |-> 
-u B ) ,  RR ,  <  )
)
Distinct variable groups:    x, A, y    y, B
Allowed substitution hints:    ph( x, y)    B( x)

Proof of Theorem infnsuprnmpt
Dummy variables  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 infnsuprnmpt.x . . . 4  |-  F/ x ph
2 eqid 2622 . . . 4  |-  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  B )
3 infnsuprnmpt.b . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  RR )
41, 2, 3rnmptssd 39385 . . 3  |-  ( ph  ->  ran  ( x  e.  A  |->  B )  C_  RR )
5 infnsuprnmpt.a . . . 4  |-  ( ph  ->  A  =/=  (/) )
61, 3, 2, 5rnmptn0 39413 . . 3  |-  ( ph  ->  ran  ( x  e.  A  |->  B )  =/=  (/) )
7 infnsuprnmpt.l . . . 4  |-  ( ph  ->  E. y  e.  RR  A. x  e.  A  y  <_  B )
87rnmptlb 39453 . . 3  |-  ( ph  ->  E. y  e.  RR  A. z  e.  ran  (
x  e.  A  |->  B ) y  <_  z
)
9 infrenegsup 11006 . . 3  |-  ( ( ran  ( x  e.  A  |->  B )  C_  RR  /\  ran  ( x  e.  A  |->  B )  =/=  (/)  /\  E. y  e.  RR  A. z  e. 
ran  ( x  e.  A  |->  B ) y  <_  z )  -> inf ( ran  ( x  e.  A  |->  B ) ,  RR ,  <  )  =  -u sup ( { w  e.  RR  |  -u w  e.  ran  (
x  e.  A  |->  B ) } ,  RR ,  <  ) )
104, 6, 8, 9syl3anc 1326 . 2  |-  ( ph  -> inf ( ran  ( x  e.  A  |->  B ) ,  RR ,  <  )  =  -u sup ( { w  e.  RR  |  -u w  e.  ran  (
x  e.  A  |->  B ) } ,  RR ,  <  ) )
11 eqid 2622 . . . . . . . . 9  |-  ( x  e.  A  |->  -u B
)  =  ( x  e.  A  |->  -u B
)
12 rabidim2 39284 . . . . . . . . . . . 12  |-  ( w  e.  { w  e.  RR  |  -u w  e.  ran  ( x  e.  A  |->  B ) }  ->  -u w  e.  ran  ( x  e.  A  |->  B ) )
1312adantl 482 . . . . . . . . . . 11  |-  ( (
ph  /\  w  e.  { w  e.  RR  |  -u w  e.  ran  (
x  e.  A  |->  B ) } )  ->  -u w  e.  ran  (
x  e.  A  |->  B ) )
14 negex 10279 . . . . . . . . . . . 12  |-  -u w  e.  _V
152elrnmpt 5372 . . . . . . . . . . . 12  |-  ( -u w  e.  _V  ->  (
-u w  e.  ran  ( x  e.  A  |->  B )  <->  E. x  e.  A  -u w  =  B ) )
1614, 15ax-mp 5 . . . . . . . . . . 11  |-  ( -u w  e.  ran  ( x  e.  A  |->  B )  <->  E. x  e.  A  -u w  =  B )
1713, 16sylib 208 . . . . . . . . . 10  |-  ( (
ph  /\  w  e.  { w  e.  RR  |  -u w  e.  ran  (
x  e.  A  |->  B ) } )  ->  E. x  e.  A  -u w  =  B )
18 nfcv 2764 . . . . . . . . . . . . 13  |-  F/_ x w
1918nfneg 10277 . . . . . . . . . . . . . . 15  |-  F/_ x -u w
20 nfmpt1 4747 . . . . . . . . . . . . . . . 16  |-  F/_ x
( x  e.  A  |->  B )
2120nfrn 5368 . . . . . . . . . . . . . . 15  |-  F/_ x ran  ( x  e.  A  |->  B )
2219, 21nfel 2777 . . . . . . . . . . . . . 14  |-  F/ x -u w  e.  ran  (
x  e.  A  |->  B )
23 nfcv 2764 . . . . . . . . . . . . . 14  |-  F/_ x RR
2422, 23nfrab 3123 . . . . . . . . . . . . 13  |-  F/_ x { w  e.  RR  |  -u w  e.  ran  ( x  e.  A  |->  B ) }
2518, 24nfel 2777 . . . . . . . . . . . 12  |-  F/ x  w  e.  { w  e.  RR  |  -u w  e.  ran  ( x  e.  A  |->  B ) }
261, 25nfan 1828 . . . . . . . . . . 11  |-  F/ x
( ph  /\  w  e.  { w  e.  RR  |  -u w  e.  ran  ( x  e.  A  |->  B ) } )
27 rabidim1 3117 . . . . . . . . . . . . 13  |-  ( w  e.  { w  e.  RR  |  -u w  e.  ran  ( x  e.  A  |->  B ) }  ->  w  e.  RR )
2827adantl 482 . . . . . . . . . . . 12  |-  ( (
ph  /\  w  e.  { w  e.  RR  |  -u w  e.  ran  (
x  e.  A  |->  B ) } )  ->  w  e.  RR )
29 negeq 10273 . . . . . . . . . . . . . . . 16  |-  ( -u w  =  B  ->  -u -u w  =  -u B
)
3029eqcomd 2628 . . . . . . . . . . . . . . 15  |-  ( -u w  =  B  ->  -u B  =  -u -u w
)
31303ad2ant3 1084 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  w  e.  RR )  /\  x  e.  A  /\  -u w  =  B )  ->  -u B  =  -u -u w )
32 simp1r 1086 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  w  e.  RR )  /\  x  e.  A  /\  -u w  =  B )  ->  w  e.  RR )
33 recn 10026 . . . . . . . . . . . . . . . 16  |-  ( w  e.  RR  ->  w  e.  CC )
3433negnegd 10383 . . . . . . . . . . . . . . 15  |-  ( w  e.  RR  ->  -u -u w  =  w )
3532, 34syl 17 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  w  e.  RR )  /\  x  e.  A  /\  -u w  =  B )  ->  -u -u w  =  w )
3631, 35eqtr2d 2657 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  w  e.  RR )  /\  x  e.  A  /\  -u w  =  B )  ->  w  =  -u B )
37363exp 1264 . . . . . . . . . . . 12  |-  ( (
ph  /\  w  e.  RR )  ->  ( x  e.  A  ->  ( -u w  =  B  ->  w  =  -u B ) ) )
3828, 37syldan 487 . . . . . . . . . . 11  |-  ( (
ph  /\  w  e.  { w  e.  RR  |  -u w  e.  ran  (
x  e.  A  |->  B ) } )  -> 
( x  e.  A  ->  ( -u w  =  B  ->  w  =  -u B ) ) )
3926, 38reximdai 3012 . . . . . . . . . 10  |-  ( (
ph  /\  w  e.  { w  e.  RR  |  -u w  e.  ran  (
x  e.  A  |->  B ) } )  -> 
( E. x  e.  A  -u w  =  B  ->  E. x  e.  A  w  =  -u B ) )
4017, 39mpd 15 . . . . . . . . 9  |-  ( (
ph  /\  w  e.  { w  e.  RR  |  -u w  e.  ran  (
x  e.  A  |->  B ) } )  ->  E. x  e.  A  w  =  -u B )
41 simpr 477 . . . . . . . . 9  |-  ( (
ph  /\  w  e.  { w  e.  RR  |  -u w  e.  ran  (
x  e.  A  |->  B ) } )  ->  w  e.  { w  e.  RR  |  -u w  e.  ran  ( x  e.  A  |->  B ) } )
4211, 40, 41elrnmptd 39366 . . . . . . . 8  |-  ( (
ph  /\  w  e.  { w  e.  RR  |  -u w  e.  ran  (
x  e.  A  |->  B ) } )  ->  w  e.  ran  ( x  e.  A  |->  -u B
) )
4342ex 450 . . . . . . 7  |-  ( ph  ->  ( w  e.  {
w  e.  RR  |  -u w  e.  ran  (
x  e.  A  |->  B ) }  ->  w  e.  ran  ( x  e.  A  |->  -u B ) ) )
44 vex 3203 . . . . . . . . . . . . 13  |-  w  e. 
_V
4511elrnmpt 5372 . . . . . . . . . . . . 13  |-  ( w  e.  _V  ->  (
w  e.  ran  (
x  e.  A  |->  -u B )  <->  E. x  e.  A  w  =  -u B ) )
4644, 45ax-mp 5 . . . . . . . . . . . 12  |-  ( w  e.  ran  ( x  e.  A  |->  -u B
)  <->  E. x  e.  A  w  =  -u B )
4746biimpi 206 . . . . . . . . . . 11  |-  ( w  e.  ran  ( x  e.  A  |->  -u B
)  ->  E. x  e.  A  w  =  -u B )
4847adantl 482 . . . . . . . . . 10  |-  ( (
ph  /\  w  e.  ran  ( x  e.  A  |-> 
-u B ) )  ->  E. x  e.  A  w  =  -u B )
4918, 23nfel 2777 . . . . . . . . . . . . 13  |-  F/ x  w  e.  RR
5049, 22nfan 1828 . . . . . . . . . . . 12  |-  F/ x
( w  e.  RR  /\  -u w  e.  ran  ( x  e.  A  |->  B ) )
51 simp3 1063 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  A  /\  w  =  -u B )  ->  w  =  -u B )
523renegcld 10457 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  A )  ->  -u B  e.  RR )
53523adant3 1081 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  A  /\  w  =  -u B )  ->  -u B  e.  RR )
5451, 53eqeltrd 2701 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  A  /\  w  =  -u B )  ->  w  e.  RR )
55 simp2 1062 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  A  /\  w  =  -u B )  ->  x  e.  A )
5651negeqd 10275 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  x  e.  A  /\  w  =  -u B )  ->  -u w  =  -u -u B )
573recnd 10068 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  CC )
5857negnegd 10383 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  x  e.  A )  ->  -u -u B  =  B )
59583adant3 1081 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  x  e.  A  /\  w  =  -u B )  ->  -u -u B  =  B )
6056, 59eqtrd 2656 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  A  /\  w  =  -u B )  ->  -u w  =  B )
61 rspe 3003 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  A  /\  -u w  =  B )  ->  E. x  e.  A  -u w  =  B )
6255, 60, 61syl2anc 693 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  A  /\  w  =  -u B )  ->  E. x  e.  A  -u w  =  B )
6314a1i 11 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  A  /\  w  =  -u B )  ->  -u w  e.  _V )
642, 62, 63elrnmptd 39366 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  A  /\  w  =  -u B )  ->  -u w  e.  ran  ( x  e.  A  |->  B ) )
6554, 64jca 554 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  A  /\  w  =  -u B )  ->  (
w  e.  RR  /\  -u w  e.  ran  (
x  e.  A  |->  B ) ) )
66653exp 1264 . . . . . . . . . . . 12  |-  ( ph  ->  ( x  e.  A  ->  ( w  =  -u B  ->  ( w  e.  RR  /\  -u w  e.  ran  ( x  e.  A  |->  B ) ) ) ) )
671, 50, 66rexlimd 3026 . . . . . . . . . . 11  |-  ( ph  ->  ( E. x  e.  A  w  =  -u B  ->  ( w  e.  RR  /\  -u w  e.  ran  ( x  e.  A  |->  B ) ) ) )
6867imp 445 . . . . . . . . . 10  |-  ( (
ph  /\  E. x  e.  A  w  =  -u B )  ->  (
w  e.  RR  /\  -u w  e.  ran  (
x  e.  A  |->  B ) ) )
6948, 68syldan 487 . . . . . . . . 9  |-  ( (
ph  /\  w  e.  ran  ( x  e.  A  |-> 
-u B ) )  ->  ( w  e.  RR  /\  -u w  e.  ran  ( x  e.  A  |->  B ) ) )
70 rabid 3116 . . . . . . . . 9  |-  ( w  e.  { w  e.  RR  |  -u w  e.  ran  ( x  e.  A  |->  B ) }  <-> 
( w  e.  RR  /\  -u w  e.  ran  ( x  e.  A  |->  B ) ) )
7169, 70sylibr 224 . . . . . . . 8  |-  ( (
ph  /\  w  e.  ran  ( x  e.  A  |-> 
-u B ) )  ->  w  e.  {
w  e.  RR  |  -u w  e.  ran  (
x  e.  A  |->  B ) } )
7271ex 450 . . . . . . 7  |-  ( ph  ->  ( w  e.  ran  ( x  e.  A  |-> 
-u B )  ->  w  e.  { w  e.  RR  |  -u w  e.  ran  ( x  e.  A  |->  B ) } ) )
7343, 72impbid 202 . . . . . 6  |-  ( ph  ->  ( w  e.  {
w  e.  RR  |  -u w  e.  ran  (
x  e.  A  |->  B ) }  <->  w  e.  ran  ( x  e.  A  |-> 
-u B ) ) )
7473alrimiv 1855 . . . . 5  |-  ( ph  ->  A. w ( w  e.  { w  e.  RR  |  -u w  e.  ran  ( x  e.  A  |->  B ) }  <-> 
w  e.  ran  (
x  e.  A  |->  -u B ) ) )
75 nfrab1 3122 . . . . . 6  |-  F/_ w { w  e.  RR  |  -u w  e.  ran  ( x  e.  A  |->  B ) }
76 nfcv 2764 . . . . . 6  |-  F/_ w ran  ( x  e.  A  |-> 
-u B )
7775, 76dfcleqf 39255 . . . . 5  |-  ( { w  e.  RR  |  -u w  e.  ran  (
x  e.  A  |->  B ) }  =  ran  ( x  e.  A  |-> 
-u B )  <->  A. w
( w  e.  {
w  e.  RR  |  -u w  e.  ran  (
x  e.  A  |->  B ) }  <->  w  e.  ran  ( x  e.  A  |-> 
-u B ) ) )
7874, 77sylibr 224 . . . 4  |-  ( ph  ->  { w  e.  RR  |  -u w  e.  ran  ( x  e.  A  |->  B ) }  =  ran  ( x  e.  A  |-> 
-u B ) )
7978supeq1d 8352 . . 3  |-  ( ph  ->  sup ( { w  e.  RR  |  -u w  e.  ran  ( x  e.  A  |->  B ) } ,  RR ,  <  )  =  sup ( ran  ( x  e.  A  |-> 
-u B ) ,  RR ,  <  )
)
8079negeqd 10275 . 2  |-  ( ph  -> 
-u sup ( { w  e.  RR  |  -u w  e.  ran  ( x  e.  A  |->  B ) } ,  RR ,  <  )  =  -u sup ( ran  ( x  e.  A  |-> 
-u B ) ,  RR ,  <  )
)
81 eqidd 2623 . 2  |-  ( ph  -> 
-u sup ( ran  (
x  e.  A  |->  -u B ) ,  RR ,  <  )  =  -u sup ( ran  ( x  e.  A  |->  -u B
) ,  RR ,  <  ) )
8210, 80, 813eqtrd 2660 1  |-  ( ph  -> inf ( ran  ( x  e.  A  |->  B ) ,  RR ,  <  )  =  -u sup ( ran  ( x  e.  A  |-> 
-u B ) ,  RR ,  <  )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037   A.wal 1481    = wceq 1483   F/wnf 1708    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   {crab 2916   _Vcvv 3200    C_ wss 3574   (/)c0 3915   class class class wbr 4653    |-> cmpt 4729   ran crn 5115   supcsup 8346  infcinf 8347   RRcr 9935    < clt 10074    <_ cle 10075   -ucneg 10267
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269
This theorem is referenced by:  smfinflem  41023
  Copyright terms: Public domain W3C validator