Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  supminfxrrnmpt Structured version   Visualization version   Unicode version

Theorem supminfxrrnmpt 39701
Description: The indexed supremum of a set of reals is the negation of the indexed infimum of that set's image under negation. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
supminfxrrnmpt.x  |-  F/ x ph
supminfxrrnmpt.b  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  RR* )
Assertion
Ref Expression
supminfxrrnmpt  |-  ( ph  ->  sup ( ran  (
x  e.  A  |->  B ) ,  RR* ,  <  )  =  -einf ( ran  ( x  e.  A  |->  -e B ) ,  RR* ,  <  )
)
Distinct variable group:    x, A
Allowed substitution hints:    ph( x)    B( x)

Proof of Theorem supminfxrrnmpt
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 supminfxrrnmpt.x . . . 4  |-  F/ x ph
2 eqid 2622 . . . 4  |-  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  B )
3 supminfxrrnmpt.b . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  RR* )
41, 2, 3rnmptssd 39385 . . 3  |-  ( ph  ->  ran  ( x  e.  A  |->  B )  C_  RR* )
54supminfxr2 39699 . 2  |-  ( ph  ->  sup ( ran  (
x  e.  A  |->  B ) ,  RR* ,  <  )  =  -einf ( { y  e.  RR*  | 
-e y  e. 
ran  ( x  e.  A  |->  B ) } ,  RR* ,  <  )
)
6 xnegex 12039 . . . . . . . . . . . 12  |-  -e
y  e.  _V
72elrnmpt 5372 . . . . . . . . . . . 12  |-  (  -e y  e.  _V  ->  (  -e y  e.  ran  ( x  e.  A  |->  B )  <->  E. x  e.  A  -e y  =  B ) )
86, 7ax-mp 5 . . . . . . . . . . 11  |-  (  -e y  e.  ran  ( x  e.  A  |->  B )  <->  E. x  e.  A  -e y  =  B )
98biimpi 206 . . . . . . . . . 10  |-  (  -e y  e.  ran  ( x  e.  A  |->  B )  ->  E. x  e.  A  -e y  =  B )
10 eqid 2622 . . . . . . . . . . 11  |-  ( x  e.  A  |->  -e
B )  =  ( x  e.  A  |->  -e B )
11 xnegneg 12045 . . . . . . . . . . . . . . . . 17  |-  ( y  e.  RR*  ->  -e  -e y  =  y )
1211eqcomd 2628 . . . . . . . . . . . . . . . 16  |-  ( y  e.  RR*  ->  y  = 
-e  -e
y )
1312adantr 481 . . . . . . . . . . . . . . 15  |-  ( ( y  e.  RR*  /\  -e
y  =  B )  ->  y  =  -e  -e y )
14 xnegeq 12038 . . . . . . . . . . . . . . . 16  |-  (  -e y  =  B  ->  -e  -e
y  =  -e
B )
1514adantl 482 . . . . . . . . . . . . . . 15  |-  ( ( y  e.  RR*  /\  -e
y  =  B )  ->  -e  -e
y  =  -e
B )
1613, 15eqtrd 2656 . . . . . . . . . . . . . 14  |-  ( ( y  e.  RR*  /\  -e
y  =  B )  ->  y  =  -e B )
1716ex 450 . . . . . . . . . . . . 13  |-  ( y  e.  RR*  ->  (  -e y  =  B  ->  y  =  -e B ) )
1817reximdv 3016 . . . . . . . . . . . 12  |-  ( y  e.  RR*  ->  ( E. x  e.  A  -e y  =  B  ->  E. x  e.  A  y  =  -e B ) )
1918imp 445 . . . . . . . . . . 11  |-  ( ( y  e.  RR*  /\  E. x  e.  A  -e
y  =  B )  ->  E. x  e.  A  y  =  -e B )
20 simpl 473 . . . . . . . . . . 11  |-  ( ( y  e.  RR*  /\  E. x  e.  A  -e
y  =  B )  ->  y  e.  RR* )
2110, 19, 20elrnmptd 39366 . . . . . . . . . 10  |-  ( ( y  e.  RR*  /\  E. x  e.  A  -e
y  =  B )  ->  y  e.  ran  ( x  e.  A  |-> 
-e B ) )
229, 21sylan2 491 . . . . . . . . 9  |-  ( ( y  e.  RR*  /\  -e
y  e.  ran  (
x  e.  A  |->  B ) )  ->  y  e.  ran  ( x  e.  A  |->  -e B ) )
2322ex 450 . . . . . . . 8  |-  ( y  e.  RR*  ->  (  -e y  e.  ran  ( x  e.  A  |->  B )  ->  y  e.  ran  ( x  e.  A  |->  -e B ) ) )
2423rgen 2922 . . . . . . 7  |-  A. y  e.  RR*  (  -e
y  e.  ran  (
x  e.  A  |->  B )  ->  y  e.  ran  ( x  e.  A  |-> 
-e B ) )
25 rabss 3679 . . . . . . . 8  |-  ( { y  e.  RR*  |  -e y  e.  ran  ( x  e.  A  |->  B ) }  C_  ran  ( x  e.  A  |-> 
-e B )  <->  A. y  e.  RR*  (  -e y  e.  ran  ( x  e.  A  |->  B )  ->  y  e.  ran  ( x  e.  A  |->  -e B ) ) )
2625biimpri 218 . . . . . . 7  |-  ( A. y  e.  RR*  (  -e y  e.  ran  ( x  e.  A  |->  B )  ->  y  e.  ran  ( x  e.  A  |->  -e B ) )  ->  { y  e.  RR*  |  -e
y  e.  ran  (
x  e.  A  |->  B ) }  C_  ran  ( x  e.  A  |-> 
-e B ) )
2724, 26ax-mp 5 . . . . . 6  |-  { y  e.  RR*  |  -e
y  e.  ran  (
x  e.  A  |->  B ) }  C_  ran  ( x  e.  A  |-> 
-e B )
2827a1i 11 . . . . 5  |-  ( ph  ->  { y  e.  RR*  | 
-e y  e. 
ran  ( x  e.  A  |->  B ) } 
C_  ran  ( x  e.  A  |->  -e
B ) )
29 nfcv 2764 . . . . . . . 8  |-  F/_ x  -e y
30 nfmpt1 4747 . . . . . . . . 9  |-  F/_ x
( x  e.  A  |->  B )
3130nfrn 5368 . . . . . . . 8  |-  F/_ x ran  ( x  e.  A  |->  B )
3229, 31nfel 2777 . . . . . . 7  |-  F/ x  -e y  e.  ran  ( x  e.  A  |->  B )
33 nfcv 2764 . . . . . . 7  |-  F/_ x RR*
3432, 33nfrab 3123 . . . . . 6  |-  F/_ x { y  e.  RR*  | 
-e y  e. 
ran  ( x  e.  A  |->  B ) }
35 xnegeq 12038 . . . . . . . 8  |-  ( y  =  -e B  ->  -e y  = 
-e  -e
B )
3635eleq1d 2686 . . . . . . 7  |-  ( y  =  -e B  ->  (  -e
y  e.  ran  (
x  e.  A  |->  B )  <->  -e  -e
B  e.  ran  (
x  e.  A  |->  B ) ) )
373xnegcld 12130 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  -e
B  e.  RR* )
38 xnegneg 12045 . . . . . . . . 9  |-  ( B  e.  RR*  ->  -e  -e B  =  B )
393, 38syl 17 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  -e  -e B  =  B )
40 simpr 477 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  x  e.  A )
412, 40, 3elrnmpt1d 39435 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  ran  ( x  e.  A  |->  B ) )
4239, 41eqeltrd 2701 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  -e  -e B  e.  ran  ( x  e.  A  |->  B ) )
4336, 37, 42elrabd 3365 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  -e
B  e.  { y  e.  RR*  |  -e
y  e.  ran  (
x  e.  A  |->  B ) } )
441, 34, 10, 43rnmptssdf 39469 . . . . 5  |-  ( ph  ->  ran  ( x  e.  A  |->  -e B ) 
C_  { y  e. 
RR*  |  -e y  e.  ran  ( x  e.  A  |->  B ) } )
4528, 44eqssd 3620 . . . 4  |-  ( ph  ->  { y  e.  RR*  | 
-e y  e. 
ran  ( x  e.  A  |->  B ) }  =  ran  ( x  e.  A  |->  -e
B ) )
4645infeq1d 8383 . . 3  |-  ( ph  -> inf ( { y  e. 
RR*  |  -e y  e.  ran  ( x  e.  A  |->  B ) } ,  RR* ,  <  )  = inf ( ran  (
x  e.  A  |->  -e B ) , 
RR* ,  <  ) )
4746xnegeqd 39664 . 2  |-  ( ph  -> 
-einf ( { y  e.  RR*  |  -e y  e.  ran  ( x  e.  A  |->  B ) } ,  RR* ,  <  )  = 
-einf ( ran  ( x  e.  A  |-> 
-e B ) ,  RR* ,  <  )
)
485, 47eqtrd 2656 1  |-  ( ph  ->  sup ( ran  (
x  e.  A  |->  B ) ,  RR* ,  <  )  =  -einf ( ran  ( x  e.  A  |->  -e B ) ,  RR* ,  <  )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483   F/wnf 1708    e. wcel 1990   A.wral 2912   E.wrex 2913   {crab 2916   _Vcvv 3200    C_ wss 3574    |-> cmpt 4729   ran crn 5115   supcsup 8346  infcinf 8347   RR*cxr 10073    < clt 10074    -ecxne 11943
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-xneg 11946
This theorem is referenced by:  liminfvalxr  40015
  Copyright terms: Public domain W3C validator