MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqgabl Structured version   Visualization version   Unicode version

Theorem eqgabl 18240
Description: Value of the subgroup coset equivalence relation on an abelian group. (Contributed by Mario Carneiro, 14-Jun-2015.)
Hypotheses
Ref Expression
eqgabl.x  |-  X  =  ( Base `  G
)
eqgabl.n  |-  .-  =  ( -g `  G )
eqgabl.r  |-  .~  =  ( G ~QG  S )
Assertion
Ref Expression
eqgabl  |-  ( ( G  e.  Abel  /\  S  C_  X )  ->  ( A  .~  B  <->  ( A  e.  X  /\  B  e.  X  /\  ( B 
.-  A )  e.  S ) ) )

Proof of Theorem eqgabl
StepHypRef Expression
1 eqgabl.x . . 3  |-  X  =  ( Base `  G
)
2 eqid 2622 . . 3  |-  ( invg `  G )  =  ( invg `  G )
3 eqid 2622 . . 3  |-  ( +g  `  G )  =  ( +g  `  G )
4 eqgabl.r . . 3  |-  .~  =  ( G ~QG  S )
51, 2, 3, 4eqgval 17643 . 2  |-  ( ( G  e.  Abel  /\  S  C_  X )  ->  ( A  .~  B  <->  ( A  e.  X  /\  B  e.  X  /\  ( ( ( invg `  G ) `  A
) ( +g  `  G
) B )  e.  S ) ) )
6 simpll 790 . . . . . . 7  |-  ( ( ( G  e.  Abel  /\  S  C_  X )  /\  ( A  e.  X  /\  B  e.  X
) )  ->  G  e.  Abel )
7 ablgrp 18198 . . . . . . . . 9  |-  ( G  e.  Abel  ->  G  e. 
Grp )
87ad2antrr 762 . . . . . . . 8  |-  ( ( ( G  e.  Abel  /\  S  C_  X )  /\  ( A  e.  X  /\  B  e.  X
) )  ->  G  e.  Grp )
9 simprl 794 . . . . . . . 8  |-  ( ( ( G  e.  Abel  /\  S  C_  X )  /\  ( A  e.  X  /\  B  e.  X
) )  ->  A  e.  X )
101, 2grpinvcl 17467 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  ( ( invg `  G ) `  A
)  e.  X )
118, 9, 10syl2anc 693 . . . . . . 7  |-  ( ( ( G  e.  Abel  /\  S  C_  X )  /\  ( A  e.  X  /\  B  e.  X
) )  ->  (
( invg `  G ) `  A
)  e.  X )
12 simprr 796 . . . . . . 7  |-  ( ( ( G  e.  Abel  /\  S  C_  X )  /\  ( A  e.  X  /\  B  e.  X
) )  ->  B  e.  X )
131, 3ablcom 18210 . . . . . . 7  |-  ( ( G  e.  Abel  /\  (
( invg `  G ) `  A
)  e.  X  /\  B  e.  X )  ->  ( ( ( invg `  G ) `
 A ) ( +g  `  G ) B )  =  ( B ( +g  `  G
) ( ( invg `  G ) `
 A ) ) )
146, 11, 12, 13syl3anc 1326 . . . . . 6  |-  ( ( ( G  e.  Abel  /\  S  C_  X )  /\  ( A  e.  X  /\  B  e.  X
) )  ->  (
( ( invg `  G ) `  A
) ( +g  `  G
) B )  =  ( B ( +g  `  G ) ( ( invg `  G
) `  A )
) )
15 eqgabl.n . . . . . . . 8  |-  .-  =  ( -g `  G )
161, 3, 2, 15grpsubval 17465 . . . . . . 7  |-  ( ( B  e.  X  /\  A  e.  X )  ->  ( B  .-  A
)  =  ( B ( +g  `  G
) ( ( invg `  G ) `
 A ) ) )
1712, 9, 16syl2anc 693 . . . . . 6  |-  ( ( ( G  e.  Abel  /\  S  C_  X )  /\  ( A  e.  X  /\  B  e.  X
) )  ->  ( B  .-  A )  =  ( B ( +g  `  G ) ( ( invg `  G
) `  A )
) )
1814, 17eqtr4d 2659 . . . . 5  |-  ( ( ( G  e.  Abel  /\  S  C_  X )  /\  ( A  e.  X  /\  B  e.  X
) )  ->  (
( ( invg `  G ) `  A
) ( +g  `  G
) B )  =  ( B  .-  A
) )
1918eleq1d 2686 . . . 4  |-  ( ( ( G  e.  Abel  /\  S  C_  X )  /\  ( A  e.  X  /\  B  e.  X
) )  ->  (
( ( ( invg `  G ) `
 A ) ( +g  `  G ) B )  e.  S  <->  ( B  .-  A )  e.  S ) )
2019pm5.32da 673 . . 3  |-  ( ( G  e.  Abel  /\  S  C_  X )  ->  (
( ( A  e.  X  /\  B  e.  X )  /\  (
( ( invg `  G ) `  A
) ( +g  `  G
) B )  e.  S )  <->  ( ( A  e.  X  /\  B  e.  X )  /\  ( B  .-  A
)  e.  S ) ) )
21 df-3an 1039 . . 3  |-  ( ( A  e.  X  /\  B  e.  X  /\  ( ( ( invg `  G ) `
 A ) ( +g  `  G ) B )  e.  S
)  <->  ( ( A  e.  X  /\  B  e.  X )  /\  (
( ( invg `  G ) `  A
) ( +g  `  G
) B )  e.  S ) )
22 df-3an 1039 . . 3  |-  ( ( A  e.  X  /\  B  e.  X  /\  ( B  .-  A )  e.  S )  <->  ( ( A  e.  X  /\  B  e.  X )  /\  ( B  .-  A
)  e.  S ) )
2320, 21, 223bitr4g 303 . 2  |-  ( ( G  e.  Abel  /\  S  C_  X )  ->  (
( A  e.  X  /\  B  e.  X  /\  ( ( ( invg `  G ) `
 A ) ( +g  `  G ) B )  e.  S
)  <->  ( A  e.  X  /\  B  e.  X  /\  ( B 
.-  A )  e.  S ) ) )
245, 23bitrd 268 1  |-  ( ( G  e.  Abel  /\  S  C_  X )  ->  ( A  .~  B  <->  ( A  e.  X  /\  B  e.  X  /\  ( B 
.-  A )  e.  S ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    C_ wss 3574   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   Basecbs 15857   +g cplusg 15941   Grpcgrp 17422   invgcminusg 17423   -gcsg 17424   ~QG cqg 17590   Abelcabl 18194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-sbg 17427  df-eqg 17593  df-cmn 18195  df-abl 18196
This theorem is referenced by:  2idlcpbl  19234  zndvds  19898  tgptsmscls  21953
  Copyright terms: Public domain W3C validator