MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  invghm Structured version   Visualization version   Unicode version

Theorem invghm 18239
Description: The inversion map is a group automorphism if and only if the group is abelian. (In general it is only a group homomorphism into the opposite group, but in an abelian group the opposite group coincides with the group itself.) (Contributed by Mario Carneiro, 4-May-2015.)
Hypotheses
Ref Expression
invghm.b  |-  B  =  ( Base `  G
)
invghm.m  |-  I  =  ( invg `  G )
Assertion
Ref Expression
invghm  |-  ( G  e.  Abel  <->  I  e.  ( G  GrpHom  G ) )

Proof of Theorem invghm
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 invghm.b . . 3  |-  B  =  ( Base `  G
)
2 eqid 2622 . . 3  |-  ( +g  `  G )  =  ( +g  `  G )
3 ablgrp 18198 . . 3  |-  ( G  e.  Abel  ->  G  e. 
Grp )
4 invghm.m . . . . 5  |-  I  =  ( invg `  G )
51, 4grpinvf 17466 . . . 4  |-  ( G  e.  Grp  ->  I : B --> B )
63, 5syl 17 . . 3  |-  ( G  e.  Abel  ->  I : B --> B )
71, 2, 4ablinvadd 18215 . . . 4  |-  ( ( G  e.  Abel  /\  x  e.  B  /\  y  e.  B )  ->  (
I `  ( x
( +g  `  G ) y ) )  =  ( ( I `  x ) ( +g  `  G ) ( I `
 y ) ) )
873expb 1266 . . 3  |-  ( ( G  e.  Abel  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( I `  ( x ( +g  `  G ) y ) )  =  ( ( I `  x ) ( +g  `  G
) ( I `  y ) ) )
91, 1, 2, 2, 3, 3, 6, 8isghmd 17669 . 2  |-  ( G  e.  Abel  ->  I  e.  ( G  GrpHom  G ) )
10 ghmgrp1 17662 . . 3  |-  ( I  e.  ( G  GrpHom  G )  ->  G  e.  Grp )
1110adantr 481 . . . . . . . 8  |-  ( ( I  e.  ( G 
GrpHom  G )  /\  (
x  e.  B  /\  y  e.  B )
)  ->  G  e.  Grp )
12 simprr 796 . . . . . . . 8  |-  ( ( I  e.  ( G 
GrpHom  G )  /\  (
x  e.  B  /\  y  e.  B )
)  ->  y  e.  B )
13 simprl 794 . . . . . . . 8  |-  ( ( I  e.  ( G 
GrpHom  G )  /\  (
x  e.  B  /\  y  e.  B )
)  ->  x  e.  B )
141, 2, 4grpinvadd 17493 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  y  e.  B  /\  x  e.  B )  ->  ( I `  (
y ( +g  `  G
) x ) )  =  ( ( I `
 x ) ( +g  `  G ) ( I `  y
) ) )
1511, 12, 13, 14syl3anc 1326 . . . . . . 7  |-  ( ( I  e.  ( G 
GrpHom  G )  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( I `  ( y ( +g  `  G ) x ) )  =  ( ( I `  x ) ( +g  `  G
) ( I `  y ) ) )
1615fveq2d 6195 . . . . . 6  |-  ( ( I  e.  ( G 
GrpHom  G )  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( I `  ( I `  (
y ( +g  `  G
) x ) ) )  =  ( I `
 ( ( I `
 x ) ( +g  `  G ) ( I `  y
) ) ) )
17 simpl 473 . . . . . . 7  |-  ( ( I  e.  ( G 
GrpHom  G )  /\  (
x  e.  B  /\  y  e.  B )
)  ->  I  e.  ( G  GrpHom  G ) )
181, 4grpinvcl 17467 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  x  e.  B )  ->  ( I `  x
)  e.  B )
1911, 13, 18syl2anc 693 . . . . . . 7  |-  ( ( I  e.  ( G 
GrpHom  G )  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( I `  x )  e.  B
)
201, 4grpinvcl 17467 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  y  e.  B )  ->  ( I `  y
)  e.  B )
2111, 12, 20syl2anc 693 . . . . . . 7  |-  ( ( I  e.  ( G 
GrpHom  G )  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( I `  y )  e.  B
)
221, 2, 2ghmlin 17665 . . . . . . 7  |-  ( ( I  e.  ( G 
GrpHom  G )  /\  (
I `  x )  e.  B  /\  (
I `  y )  e.  B )  ->  (
I `  ( (
I `  x )
( +g  `  G ) ( I `  y
) ) )  =  ( ( I `  ( I `  x
) ) ( +g  `  G ) ( I `
 ( I `  y ) ) ) )
2317, 19, 21, 22syl3anc 1326 . . . . . 6  |-  ( ( I  e.  ( G 
GrpHom  G )  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( I `  ( ( I `  x ) ( +g  `  G ) ( I `
 y ) ) )  =  ( ( I `  ( I `
 x ) ) ( +g  `  G
) ( I `  ( I `  y
) ) ) )
241, 4grpinvinv 17482 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  x  e.  B )  ->  ( I `  (
I `  x )
)  =  x )
2511, 13, 24syl2anc 693 . . . . . . 7  |-  ( ( I  e.  ( G 
GrpHom  G )  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( I `  ( I `  x
) )  =  x )
261, 4grpinvinv 17482 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  y  e.  B )  ->  ( I `  (
I `  y )
)  =  y )
2711, 12, 26syl2anc 693 . . . . . . 7  |-  ( ( I  e.  ( G 
GrpHom  G )  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( I `  ( I `  y
) )  =  y )
2825, 27oveq12d 6668 . . . . . 6  |-  ( ( I  e.  ( G 
GrpHom  G )  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( (
I `  ( I `  x ) ) ( +g  `  G ) ( I `  (
I `  y )
) )  =  ( x ( +g  `  G
) y ) )
2916, 23, 283eqtrd 2660 . . . . 5  |-  ( ( I  e.  ( G 
GrpHom  G )  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( I `  ( I `  (
y ( +g  `  G
) x ) ) )  =  ( x ( +g  `  G
) y ) )
301, 2grpcl 17430 . . . . . . 7  |-  ( ( G  e.  Grp  /\  y  e.  B  /\  x  e.  B )  ->  ( y ( +g  `  G ) x )  e.  B )
3111, 12, 13, 30syl3anc 1326 . . . . . 6  |-  ( ( I  e.  ( G 
GrpHom  G )  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( y
( +g  `  G ) x )  e.  B
)
321, 4grpinvinv 17482 . . . . . 6  |-  ( ( G  e.  Grp  /\  ( y ( +g  `  G ) x )  e.  B )  -> 
( I `  (
I `  ( y
( +g  `  G ) x ) ) )  =  ( y ( +g  `  G ) x ) )
3311, 31, 32syl2anc 693 . . . . 5  |-  ( ( I  e.  ( G 
GrpHom  G )  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( I `  ( I `  (
y ( +g  `  G
) x ) ) )  =  ( y ( +g  `  G
) x ) )
3429, 33eqtr3d 2658 . . . 4  |-  ( ( I  e.  ( G 
GrpHom  G )  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( x
( +g  `  G ) y )  =  ( y ( +g  `  G
) x ) )
3534ralrimivva 2971 . . 3  |-  ( I  e.  ( G  GrpHom  G )  ->  A. x  e.  B  A. y  e.  B  ( x
( +g  `  G ) y )  =  ( y ( +g  `  G
) x ) )
361, 2isabl2 18201 . . 3  |-  ( G  e.  Abel  <->  ( G  e. 
Grp  /\  A. x  e.  B  A. y  e.  B  ( x
( +g  `  G ) y )  =  ( y ( +g  `  G
) x ) ) )
3710, 35, 36sylanbrc 698 . 2  |-  ( I  e.  ( G  GrpHom  G )  ->  G  e.  Abel )
389, 37impbii 199 1  |-  ( G  e.  Abel  <->  I  e.  ( G  GrpHom  G ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   -->wf 5884   ` cfv 5888  (class class class)co 6650   Basecbs 15857   +g cplusg 15941   Grpcgrp 17422   invgcminusg 17423    GrpHom cghm 17657   Abelcabl 18194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-ghm 17658  df-cmn 18195  df-abl 18196
This theorem is referenced by:  gsuminv  18346  invlmhm  19042  tsmsinv  21951
  Copyright terms: Public domain W3C validator