| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > invghm | Structured version Visualization version Unicode version | ||
| Description: The inversion map is a group automorphism if and only if the group is abelian. (In general it is only a group homomorphism into the opposite group, but in an abelian group the opposite group coincides with the group itself.) (Contributed by Mario Carneiro, 4-May-2015.) |
| Ref | Expression |
|---|---|
| invghm.b |
|
| invghm.m |
|
| Ref | Expression |
|---|---|
| invghm |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | invghm.b |
. . 3
| |
| 2 | eqid 2622 |
. . 3
| |
| 3 | ablgrp 18198 |
. . 3
| |
| 4 | invghm.m |
. . . . 5
| |
| 5 | 1, 4 | grpinvf 17466 |
. . . 4
|
| 6 | 3, 5 | syl 17 |
. . 3
|
| 7 | 1, 2, 4 | ablinvadd 18215 |
. . . 4
|
| 8 | 7 | 3expb 1266 |
. . 3
|
| 9 | 1, 1, 2, 2, 3, 3, 6, 8 | isghmd 17669 |
. 2
|
| 10 | ghmgrp1 17662 |
. . 3
| |
| 11 | 10 | adantr 481 |
. . . . . . . 8
|
| 12 | simprr 796 |
. . . . . . . 8
| |
| 13 | simprl 794 |
. . . . . . . 8
| |
| 14 | 1, 2, 4 | grpinvadd 17493 |
. . . . . . . 8
|
| 15 | 11, 12, 13, 14 | syl3anc 1326 |
. . . . . . 7
|
| 16 | 15 | fveq2d 6195 |
. . . . . 6
|
| 17 | simpl 473 |
. . . . . . 7
| |
| 18 | 1, 4 | grpinvcl 17467 |
. . . . . . . 8
|
| 19 | 11, 13, 18 | syl2anc 693 |
. . . . . . 7
|
| 20 | 1, 4 | grpinvcl 17467 |
. . . . . . . 8
|
| 21 | 11, 12, 20 | syl2anc 693 |
. . . . . . 7
|
| 22 | 1, 2, 2 | ghmlin 17665 |
. . . . . . 7
|
| 23 | 17, 19, 21, 22 | syl3anc 1326 |
. . . . . 6
|
| 24 | 1, 4 | grpinvinv 17482 |
. . . . . . . 8
|
| 25 | 11, 13, 24 | syl2anc 693 |
. . . . . . 7
|
| 26 | 1, 4 | grpinvinv 17482 |
. . . . . . . 8
|
| 27 | 11, 12, 26 | syl2anc 693 |
. . . . . . 7
|
| 28 | 25, 27 | oveq12d 6668 |
. . . . . 6
|
| 29 | 16, 23, 28 | 3eqtrd 2660 |
. . . . 5
|
| 30 | 1, 2 | grpcl 17430 |
. . . . . . 7
|
| 31 | 11, 12, 13, 30 | syl3anc 1326 |
. . . . . 6
|
| 32 | 1, 4 | grpinvinv 17482 |
. . . . . 6
|
| 33 | 11, 31, 32 | syl2anc 693 |
. . . . 5
|
| 34 | 29, 33 | eqtr3d 2658 |
. . . 4
|
| 35 | 34 | ralrimivva 2971 |
. . 3
|
| 36 | 1, 2 | isabl2 18201 |
. . 3
|
| 37 | 10, 35, 36 | sylanbrc 698 |
. 2
|
| 38 | 9, 37 | impbii 199 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-0g 16102 df-mgm 17242 df-sgrp 17284 df-mnd 17295 df-grp 17425 df-minusg 17426 df-ghm 17658 df-cmn 18195 df-abl 18196 |
| This theorem is referenced by: gsuminv 18346 invlmhm 19042 tsmsinv 21951 |
| Copyright terms: Public domain | W3C validator |