MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqglact Structured version   Visualization version   Unicode version

Theorem eqglact 17645
Description: A left coset can be expressed as the image of a left action. (Contributed by Mario Carneiro, 20-Sep-2015.)
Hypotheses
Ref Expression
eqger.x  |-  X  =  ( Base `  G
)
eqger.r  |-  .~  =  ( G ~QG  Y )
eqglact.3  |-  .+  =  ( +g  `  G )
Assertion
Ref Expression
eqglact  |-  ( ( G  e.  Grp  /\  Y  C_  X  /\  A  e.  X )  ->  [ A ]  .~  =  ( ( x  e.  X  |->  ( A  .+  x ) ) " Y ) )
Distinct variable groups:    x,  .+    x, 
.~    x, G    x, X    x, A    x, Y

Proof of Theorem eqglact
Dummy variable  g is distinct from all other variables.
StepHypRef Expression
1 eqger.x . . . . . . 7  |-  X  =  ( Base `  G
)
2 eqid 2622 . . . . . . 7  |-  ( invg `  G )  =  ( invg `  G )
3 eqglact.3 . . . . . . 7  |-  .+  =  ( +g  `  G )
4 eqger.r . . . . . . 7  |-  .~  =  ( G ~QG  Y )
51, 2, 3, 4eqgval 17643 . . . . . 6  |-  ( ( G  e.  Grp  /\  Y  C_  X )  -> 
( A  .~  x  <->  ( A  e.  X  /\  x  e.  X  /\  ( ( ( invg `  G ) `
 A )  .+  x )  e.  Y
) ) )
6 3anass 1042 . . . . . 6  |-  ( ( A  e.  X  /\  x  e.  X  /\  ( ( ( invg `  G ) `
 A )  .+  x )  e.  Y
)  <->  ( A  e.  X  /\  ( x  e.  X  /\  (
( ( invg `  G ) `  A
)  .+  x )  e.  Y ) ) )
75, 6syl6bb 276 . . . . 5  |-  ( ( G  e.  Grp  /\  Y  C_  X )  -> 
( A  .~  x  <->  ( A  e.  X  /\  ( x  e.  X  /\  ( ( ( invg `  G ) `
 A )  .+  x )  e.  Y
) ) ) )
87baibd 948 . . . 4  |-  ( ( ( G  e.  Grp  /\  Y  C_  X )  /\  A  e.  X
)  ->  ( A  .~  x  <->  ( x  e.  X  /\  ( ( ( invg `  G ) `  A
)  .+  x )  e.  Y ) ) )
983impa 1259 . . 3  |-  ( ( G  e.  Grp  /\  Y  C_  X  /\  A  e.  X )  ->  ( A  .~  x  <->  ( x  e.  X  /\  (
( ( invg `  G ) `  A
)  .+  x )  e.  Y ) ) )
109abbidv 2741 . 2  |-  ( ( G  e.  Grp  /\  Y  C_  X  /\  A  e.  X )  ->  { x  |  A  .~  x }  =  { x  |  ( x  e.  X  /\  ( ( ( invg `  G ) `  A
)  .+  x )  e.  Y ) } )
11 dfec2 7745 . . 3  |-  ( A  e.  X  ->  [ A ]  .~  =  { x  |  A  .~  x } )
12113ad2ant3 1084 . 2  |-  ( ( G  e.  Grp  /\  Y  C_  X  /\  A  e.  X )  ->  [ A ]  .~  =  { x  |  A  .~  x } )
13 eqid 2622 . . . . . . . . 9  |-  ( g  e.  X  |->  ( x  e.  X  |->  ( g 
.+  x ) ) )  =  ( g  e.  X  |->  ( x  e.  X  |->  ( g 
.+  x ) ) )
1413, 1, 3, 2grplactcnv 17518 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  ( ( ( g  e.  X  |->  ( x  e.  X  |->  ( g 
.+  x ) ) ) `  A ) : X -1-1-onto-> X  /\  `' ( ( g  e.  X  |->  ( x  e.  X  |->  ( g  .+  x
) ) ) `  A )  =  ( ( g  e.  X  |->  ( x  e.  X  |->  ( g  .+  x
) ) ) `  ( ( invg `  G ) `  A
) ) ) )
1514simprd 479 . . . . . . 7  |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  `' ( ( g  e.  X  |->  ( x  e.  X  |->  ( g 
.+  x ) ) ) `  A )  =  ( ( g  e.  X  |->  ( x  e.  X  |->  ( g 
.+  x ) ) ) `  ( ( invg `  G
) `  A )
) )
1613, 1grplactfval 17516 . . . . . . . . 9  |-  ( A  e.  X  ->  (
( g  e.  X  |->  ( x  e.  X  |->  ( g  .+  x
) ) ) `  A )  =  ( x  e.  X  |->  ( A  .+  x ) ) )
1716adantl 482 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  ( ( g  e.  X  |->  ( x  e.  X  |->  ( g  .+  x ) ) ) `
 A )  =  ( x  e.  X  |->  ( A  .+  x
) ) )
1817cnveqd 5298 . . . . . . 7  |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  `' ( ( g  e.  X  |->  ( x  e.  X  |->  ( g 
.+  x ) ) ) `  A )  =  `' ( x  e.  X  |->  ( A 
.+  x ) ) )
191, 2grpinvcl 17467 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  ( ( invg `  G ) `  A
)  e.  X )
2013, 1grplactfval 17516 . . . . . . . 8  |-  ( ( ( invg `  G ) `  A
)  e.  X  -> 
( ( g  e.  X  |->  ( x  e.  X  |->  ( g  .+  x ) ) ) `
 ( ( invg `  G ) `
 A ) )  =  ( x  e.  X  |->  ( ( ( invg `  G
) `  A )  .+  x ) ) )
2119, 20syl 17 . . . . . . 7  |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  ( ( g  e.  X  |->  ( x  e.  X  |->  ( g  .+  x ) ) ) `
 ( ( invg `  G ) `
 A ) )  =  ( x  e.  X  |->  ( ( ( invg `  G
) `  A )  .+  x ) ) )
2215, 18, 213eqtr3d 2664 . . . . . 6  |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  `' ( x  e.  X  |->  ( A  .+  x ) )  =  ( x  e.  X  |->  ( ( ( invg `  G ) `
 A )  .+  x ) ) )
2322cnveqd 5298 . . . . 5  |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  `' `' ( x  e.  X  |->  ( A  .+  x ) )  =  `' ( x  e.  X  |->  ( ( ( invg `  G
) `  A )  .+  x ) ) )
24233adant2 1080 . . . 4  |-  ( ( G  e.  Grp  /\  Y  C_  X  /\  A  e.  X )  ->  `' `' ( x  e.  X  |->  ( A  .+  x ) )  =  `' ( x  e.  X  |->  ( ( ( invg `  G
) `  A )  .+  x ) ) )
2524imaeq1d 5465 . . 3  |-  ( ( G  e.  Grp  /\  Y  C_  X  /\  A  e.  X )  ->  ( `' `' ( x  e.  X  |->  ( A  .+  x ) ) " Y )  =  ( `' ( x  e.  X  |->  ( ( ( invg `  G
) `  A )  .+  x ) ) " Y ) )
26 imacnvcnv 5599 . . 3  |-  ( `' `' ( x  e.  X  |->  ( A  .+  x ) ) " Y )  =  ( ( x  e.  X  |->  ( A  .+  x
) ) " Y
)
27 eqid 2622 . . . . 5  |-  ( x  e.  X  |->  ( ( ( invg `  G ) `  A
)  .+  x )
)  =  ( x  e.  X  |->  ( ( ( invg `  G ) `  A
)  .+  x )
)
2827mptpreima 5628 . . . 4  |-  ( `' ( x  e.  X  |->  ( ( ( invg `  G ) `
 A )  .+  x ) ) " Y )  =  {
x  e.  X  | 
( ( ( invg `  G ) `
 A )  .+  x )  e.  Y }
29 df-rab 2921 . . . 4  |-  { x  e.  X  |  (
( ( invg `  G ) `  A
)  .+  x )  e.  Y }  =  {
x  |  ( x  e.  X  /\  (
( ( invg `  G ) `  A
)  .+  x )  e.  Y ) }
3028, 29eqtri 2644 . . 3  |-  ( `' ( x  e.  X  |->  ( ( ( invg `  G ) `
 A )  .+  x ) ) " Y )  =  {
x  |  ( x  e.  X  /\  (
( ( invg `  G ) `  A
)  .+  x )  e.  Y ) }
3125, 26, 303eqtr3g 2679 . 2  |-  ( ( G  e.  Grp  /\  Y  C_  X  /\  A  e.  X )  ->  (
( x  e.  X  |->  ( A  .+  x
) ) " Y
)  =  { x  |  ( x  e.  X  /\  ( ( ( invg `  G ) `  A
)  .+  x )  e.  Y ) } )
3210, 12, 313eqtr4d 2666 1  |-  ( ( G  e.  Grp  /\  Y  C_  X  /\  A  e.  X )  ->  [ A ]  .~  =  ( ( x  e.  X  |->  ( A  .+  x ) ) " Y ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   {cab 2608   {crab 2916    C_ wss 3574   class class class wbr 4653    |-> cmpt 4729   `'ccnv 5113   "cima 5117   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650   [cec 7740   Basecbs 15857   +g cplusg 15941   Grpcgrp 17422   invgcminusg 17423   ~QG cqg 17590
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-ec 7744  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-eqg 17593
This theorem is referenced by:  eqgen  17647  cldsubg  21914  tgpconncompeqg  21915  snclseqg  21919
  Copyright terms: Public domain W3C validator