| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > snclseqg | Structured version Visualization version Unicode version | ||
| Description: The coset of the closure of the identity is the closure of a point. (Contributed by Mario Carneiro, 22-Sep-2015.) |
| Ref | Expression |
|---|---|
| snclseqg.x |
|
| snclseqg.j |
|
| snclseqg.z |
|
| snclseqg.r |
|
| snclseqg.s |
|
| Ref | Expression |
|---|---|
| snclseqg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snclseqg.s |
. . . 4
| |
| 2 | 1 | imaeq2i 5464 |
. . 3
|
| 3 | tgpgrp 21882 |
. . . . 5
| |
| 4 | 3 | adantr 481 |
. . . 4
|
| 5 | snclseqg.j |
. . . . . . . . . 10
| |
| 6 | snclseqg.x |
. . . . . . . . . 10
| |
| 7 | 5, 6 | tgptopon 21886 |
. . . . . . . . 9
|
| 8 | 7 | adantr 481 |
. . . . . . . 8
|
| 9 | topontop 20718 |
. . . . . . . 8
| |
| 10 | 8, 9 | syl 17 |
. . . . . . 7
|
| 11 | snclseqg.z |
. . . . . . . . . . 11
| |
| 12 | 6, 11 | grpidcl 17450 |
. . . . . . . . . 10
|
| 13 | 4, 12 | syl 17 |
. . . . . . . . 9
|
| 14 | 13 | snssd 4340 |
. . . . . . . 8
|
| 15 | toponuni 20719 |
. . . . . . . . 9
| |
| 16 | 8, 15 | syl 17 |
. . . . . . . 8
|
| 17 | 14, 16 | sseqtrd 3641 |
. . . . . . 7
|
| 18 | eqid 2622 |
. . . . . . . 8
| |
| 19 | 18 | clsss3 20863 |
. . . . . . 7
|
| 20 | 10, 17, 19 | syl2anc 693 |
. . . . . 6
|
| 21 | 20, 16 | sseqtr4d 3642 |
. . . . 5
|
| 22 | 1, 21 | syl5eqss 3649 |
. . . 4
|
| 23 | simpr 477 |
. . . 4
| |
| 24 | snclseqg.r |
. . . . 5
| |
| 25 | eqid 2622 |
. . . . 5
| |
| 26 | 6, 24, 25 | eqglact 17645 |
. . . 4
|
| 27 | 4, 22, 23, 26 | syl3anc 1326 |
. . 3
|
| 28 | eqid 2622 |
. . . . 5
| |
| 29 | 28, 6, 25, 5 | tgplacthmeo 21907 |
. . . 4
|
| 30 | 18 | hmeocls 21571 |
. . . 4
|
| 31 | 29, 17, 30 | syl2anc 693 |
. . 3
|
| 32 | 2, 27, 31 | 3eqtr4a 2682 |
. 2
|
| 33 | df-ima 5127 |
. . . . 5
| |
| 34 | 14 | resmptd 5452 |
. . . . . 6
|
| 35 | 34 | rneqd 5353 |
. . . . 5
|
| 36 | 33, 35 | syl5eq 2668 |
. . . 4
|
| 37 | fvex 6201 |
. . . . . . . . 9
| |
| 38 | 11, 37 | eqeltri 2697 |
. . . . . . . 8
|
| 39 | oveq2 6658 |
. . . . . . . . 9
| |
| 40 | 39 | eqeq2d 2632 |
. . . . . . . 8
|
| 41 | 38, 40 | rexsn 4223 |
. . . . . . 7
|
| 42 | 6, 25, 11 | grprid 17453 |
. . . . . . . . 9
|
| 43 | 3, 42 | sylan 488 |
. . . . . . . 8
|
| 44 | 43 | eqeq2d 2632 |
. . . . . . 7
|
| 45 | 41, 44 | syl5bb 272 |
. . . . . 6
|
| 46 | 45 | abbidv 2741 |
. . . . 5
|
| 47 | eqid 2622 |
. . . . . 6
| |
| 48 | 47 | rnmpt 5371 |
. . . . 5
|
| 49 | df-sn 4178 |
. . . . 5
| |
| 50 | 46, 48, 49 | 3eqtr4g 2681 |
. . . 4
|
| 51 | 36, 50 | eqtrd 2656 |
. . 3
|
| 52 | 51 | fveq2d 6195 |
. 2
|
| 53 | 32, 52 | eqtrd 2656 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-iin 4523 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 df-ec 7744 df-map 7859 df-0g 16102 df-topgen 16104 df-plusf 17241 df-mgm 17242 df-sgrp 17284 df-mnd 17295 df-grp 17425 df-minusg 17426 df-eqg 17593 df-top 20699 df-topon 20716 df-topsp 20737 df-bases 20750 df-cld 20823 df-cls 20825 df-cn 21031 df-cnp 21032 df-tx 21365 df-hmeo 21558 df-tmd 21876 df-tgp 21877 |
| This theorem is referenced by: tgptsmscls 21953 |
| Copyright terms: Public domain | W3C validator |