Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  infxr Structured version   Visualization version   Unicode version

Theorem infxr 39583
Description: The infimum of a set of extended reals. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
infxr.x  |-  F/ x ph
infxr.y  |-  F/ y
ph
infxr.a  |-  ( ph  ->  A  C_  RR* )
infxr.b  |-  ( ph  ->  B  e.  RR* )
infxr.n  |-  ( ph  ->  A. x  e.  A  -.  x  <  B )
infxr.e  |-  ( ph  ->  A. x  e.  RR  ( B  <  x  ->  E. y  e.  A  y  <  x ) )
Assertion
Ref Expression
infxr  |-  ( ph  -> inf ( A ,  RR* ,  <  )  =  B )
Distinct variable groups:    x, A, y    x, B, y
Allowed substitution hints:    ph( x, y)

Proof of Theorem infxr
StepHypRef Expression
1 infxr.b . 2  |-  ( ph  ->  B  e.  RR* )
2 infxr.n . 2  |-  ( ph  ->  A. x  e.  A  -.  x  <  B )
3 infxr.x . . 3  |-  F/ x ph
4 infxr.e . . . . . . 7  |-  ( ph  ->  A. x  e.  RR  ( B  <  x  ->  E. y  e.  A  y  <  x ) )
54r19.21bi 2932 . . . . . 6  |-  ( (
ph  /\  x  e.  RR )  ->  ( B  <  x  ->  E. y  e.  A  y  <  x ) )
65adantlr 751 . . . . 5  |-  ( ( ( ph  /\  x  e.  RR* )  /\  x  e.  RR )  ->  ( B  <  x  ->  E. y  e.  A  y  <  x ) )
7 simplll 798 . . . . . . 7  |-  ( ( ( ( ph  /\  x  e.  RR* )  /\  -.  x  e.  RR )  /\  B  <  x
)  ->  ph )
8 simpllr 799 . . . . . . . 8  |-  ( ( ( ( ph  /\  x  e.  RR* )  /\  -.  x  e.  RR )  /\  B  <  x
)  ->  x  e.  RR* )
9 simplr 792 . . . . . . . 8  |-  ( ( ( ( ph  /\  x  e.  RR* )  /\  -.  x  e.  RR )  /\  B  <  x
)  ->  -.  x  e.  RR )
10 mnfxr 10096 . . . . . . . . . . 11  |- -oo  e.  RR*
1110a1i 11 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR* )  /\  B  <  x )  -> -oo  e.  RR* )
12 simplr 792 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR* )  /\  B  <  x )  ->  x  e.  RR* )
131ad2antrr 762 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR* )  /\  B  <  x )  ->  B  e.  RR* )
14 mnfle 11969 . . . . . . . . . . . . 13  |-  ( B  e.  RR*  -> -oo  <_  B )
151, 14syl 17 . . . . . . . . . . . 12  |-  ( ph  -> -oo  <_  B )
1615ad2antrr 762 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR* )  /\  B  <  x )  -> -oo  <_  B )
17 simpr 477 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR* )  /\  B  <  x )  ->  B  <  x )
1811, 13, 12, 16, 17xrlelttrd 11991 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR* )  /\  B  <  x )  -> -oo  <  x )
1911, 12, 18xrgtned 39538 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR* )  /\  B  <  x )  ->  x  =/= -oo )
2019adantlr 751 . . . . . . . 8  |-  ( ( ( ( ph  /\  x  e.  RR* )  /\  -.  x  e.  RR )  /\  B  <  x
)  ->  x  =/= -oo )
218, 9, 20xrnmnfpnf 39256 . . . . . . 7  |-  ( ( ( ( ph  /\  x  e.  RR* )  /\  -.  x  e.  RR )  /\  B  <  x
)  ->  x  = +oo )
22 simpr 477 . . . . . . 7  |-  ( ( ( ( ph  /\  x  e.  RR* )  /\  -.  x  e.  RR )  /\  B  <  x
)  ->  B  <  x )
23 simpl 473 . . . . . . . . . . . 12  |-  ( (
ph  /\  B  = -oo )  ->  ph )
24 id 22 . . . . . . . . . . . . . 14  |-  ( B  = -oo  ->  B  = -oo )
25 1re 10039 . . . . . . . . . . . . . . 15  |-  1  e.  RR
26 mnflt 11957 . . . . . . . . . . . . . . 15  |-  ( 1  e.  RR  -> -oo  <  1 )
2725, 26ax-mp 5 . . . . . . . . . . . . . 14  |- -oo  <  1
2824, 27syl6eqbr 4692 . . . . . . . . . . . . 13  |-  ( B  = -oo  ->  B  <  1 )
2928adantl 482 . . . . . . . . . . . 12  |-  ( (
ph  /\  B  = -oo )  ->  B  <  1 )
30 1red 10055 . . . . . . . . . . . . 13  |-  ( ph  ->  1  e.  RR )
31 breq2 4657 . . . . . . . . . . . . . . 15  |-  ( x  =  1  ->  ( B  <  x  <->  B  <  1 ) )
32 breq2 4657 . . . . . . . . . . . . . . . 16  |-  ( x  =  1  ->  (
y  <  x  <->  y  <  1 ) )
3332rexbidv 3052 . . . . . . . . . . . . . . 15  |-  ( x  =  1  ->  ( E. y  e.  A  y  <  x  <->  E. y  e.  A  y  <  1 ) )
3431, 33imbi12d 334 . . . . . . . . . . . . . 14  |-  ( x  =  1  ->  (
( B  <  x  ->  E. y  e.  A  y  <  x )  <->  ( B  <  1  ->  E. y  e.  A  y  <  1 ) ) )
3534rspcva 3307 . . . . . . . . . . . . 13  |-  ( ( 1  e.  RR  /\  A. x  e.  RR  ( B  <  x  ->  E. y  e.  A  y  <  x ) )  ->  ( B  <  1  ->  E. y  e.  A  y  <  1 ) )
3630, 4, 35syl2anc 693 . . . . . . . . . . . 12  |-  ( ph  ->  ( B  <  1  ->  E. y  e.  A  y  <  1 ) )
3723, 29, 36sylc 65 . . . . . . . . . . 11  |-  ( (
ph  /\  B  = -oo )  ->  E. y  e.  A  y  <  1 )
3837adantlr 751 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  = +oo )  /\  B  = -oo )  ->  E. y  e.  A  y  <  1 )
39 infxr.y . . . . . . . . . . . . 13  |-  F/ y
ph
40 nfv 1843 . . . . . . . . . . . . 13  |-  F/ y  x  = +oo
4139, 40nfan 1828 . . . . . . . . . . . 12  |-  F/ y ( ph  /\  x  = +oo )
42 infxr.a . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  A  C_  RR* )
4342sselda 3603 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  y  e.  A )  ->  y  e.  RR* )
4443ad4ant13 1292 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  x  = +oo )  /\  y  e.  A
)  /\  y  <  1 )  ->  y  e.  RR* )
4525rexri 10097 . . . . . . . . . . . . . . . 16  |-  1  e.  RR*
4645a1i 11 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  x  = +oo )  /\  y  e.  A
)  /\  y  <  1 )  ->  1  e.  RR* )
47 id 22 . . . . . . . . . . . . . . . . . 18  |-  ( x  = +oo  ->  x  = +oo )
48 pnfxr 10092 . . . . . . . . . . . . . . . . . 18  |- +oo  e.  RR*
4947, 48syl6eqel 2709 . . . . . . . . . . . . . . . . 17  |-  ( x  = +oo  ->  x  e.  RR* )
5049adantl 482 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  = +oo )  ->  x  e. 
RR* )
5150ad2antrr 762 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  x  = +oo )  /\  y  e.  A
)  /\  y  <  1 )  ->  x  e.  RR* )
52 simpr 477 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  x  = +oo )  /\  y  e.  A
)  /\  y  <  1 )  ->  y  <  1 )
53 ltpnf 11954 . . . . . . . . . . . . . . . . . . . 20  |-  ( 1  e.  RR  ->  1  < +oo )
5425, 53ax-mp 5 . . . . . . . . . . . . . . . . . . 19  |-  1  < +oo
5554a1i 11 . . . . . . . . . . . . . . . . . 18  |-  ( x  = +oo  ->  1  < +oo )
5647eqcomd 2628 . . . . . . . . . . . . . . . . . 18  |-  ( x  = +oo  -> +oo  =  x )
5755, 56breqtrd 4679 . . . . . . . . . . . . . . . . 17  |-  ( x  = +oo  ->  1  <  x )
5857adantl 482 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  = +oo )  ->  1  < 
x )
5958ad2antrr 762 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  x  = +oo )  /\  y  e.  A
)  /\  y  <  1 )  ->  1  <  x )
6044, 46, 51, 52, 59xrlttrd 11990 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  x  = +oo )  /\  y  e.  A
)  /\  y  <  1 )  ->  y  <  x )
6160ex 450 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  = +oo )  /\  y  e.  A )  ->  (
y  <  1  ->  y  <  x ) )
6261ex 450 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  = +oo )  ->  ( y  e.  A  ->  (
y  <  1  ->  y  <  x ) ) )
6341, 62reximdai 3012 . . . . . . . . . . 11  |-  ( (
ph  /\  x  = +oo )  ->  ( E. y  e.  A  y  <  1  ->  E. y  e.  A  y  <  x ) )
6463adantr 481 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  = +oo )  /\  B  = -oo )  ->  ( E. y  e.  A  y  <  1  ->  E. y  e.  A  y  <  x ) )
6538, 64mpd 15 . . . . . . . . 9  |-  ( ( ( ph  /\  x  = +oo )  /\  B  = -oo )  ->  E. y  e.  A  y  <  x )
66653adantl3 1219 . . . . . . . 8  |-  ( ( ( ph  /\  x  = +oo  /\  B  < 
x )  /\  B  = -oo )  ->  E. y  e.  A  y  <  x )
671adantr 481 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  -.  B  = -oo )  ->  B  e.  RR* )
68673ad2antl1 1223 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  = +oo  /\  B  < 
x )  /\  -.  B  = -oo )  ->  B  e.  RR* )
6924necon3bi 2820 . . . . . . . . . . . . . 14  |-  ( -.  B  = -oo  ->  B  =/= -oo )
7069adantl 482 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  = +oo  /\  B  < 
x )  /\  -.  B  = -oo )  ->  B  =/= -oo )
7148a1i 11 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  = +oo  /\  B  < 
x )  /\  -.  B  = -oo )  -> +oo  e.  RR* )
72 simpr 477 . . . . . . . . . . . . . . . . 17  |-  ( ( x  = +oo  /\  B  <  x )  ->  B  <  x )
73 simpl 473 . . . . . . . . . . . . . . . . 17  |-  ( ( x  = +oo  /\  B  <  x )  ->  x  = +oo )
7472, 73breqtrd 4679 . . . . . . . . . . . . . . . 16  |-  ( ( x  = +oo  /\  B  <  x )  ->  B  < +oo )
75743adant1 1079 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  = +oo  /\  B  <  x
)  ->  B  < +oo )
7675adantr 481 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  = +oo  /\  B  < 
x )  /\  -.  B  = -oo )  ->  B  < +oo )
7768, 71, 76xrltned 39573 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  = +oo  /\  B  < 
x )  /\  -.  B  = -oo )  ->  B  =/= +oo )
7868, 70, 77xrred 39581 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  = +oo  /\  B  < 
x )  /\  -.  B  = -oo )  ->  B  e.  RR )
7925a1i 11 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  = +oo  /\  B  < 
x )  /\  -.  B  = -oo )  ->  1  e.  RR )
8078, 79readdcld 10069 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  = +oo  /\  B  < 
x )  /\  -.  B  = -oo )  ->  ( B  +  1 )  e.  RR )
814adantr 481 . . . . . . . . . . . 12  |-  ( (
ph  /\  -.  B  = -oo )  ->  A. x  e.  RR  ( B  < 
x  ->  E. y  e.  A  y  <  x ) )
82813ad2antl1 1223 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  = +oo  /\  B  < 
x )  /\  -.  B  = -oo )  ->  A. x  e.  RR  ( B  <  x  ->  E. y  e.  A  y  <  x ) )
8380, 82jca 554 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  = +oo  /\  B  < 
x )  /\  -.  B  = -oo )  ->  ( ( B  + 
1 )  e.  RR  /\ 
A. x  e.  RR  ( B  <  x  ->  E. y  e.  A  y  <  x ) ) )
8478ltp1d 10954 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  = +oo  /\  B  < 
x )  /\  -.  B  = -oo )  ->  B  <  ( B  +  1 ) )
85 breq2 4657 . . . . . . . . . . . 12  |-  ( x  =  ( B  + 
1 )  ->  ( B  <  x  <->  B  <  ( B  +  1 ) ) )
86 breq2 4657 . . . . . . . . . . . . 13  |-  ( x  =  ( B  + 
1 )  ->  (
y  <  x  <->  y  <  ( B  +  1 ) ) )
8786rexbidv 3052 . . . . . . . . . . . 12  |-  ( x  =  ( B  + 
1 )  ->  ( E. y  e.  A  y  <  x  <->  E. y  e.  A  y  <  ( B  +  1 ) ) )
8885, 87imbi12d 334 . . . . . . . . . . 11  |-  ( x  =  ( B  + 
1 )  ->  (
( B  <  x  ->  E. y  e.  A  y  <  x )  <->  ( B  <  ( B  +  1 )  ->  E. y  e.  A  y  <  ( B  +  1 ) ) ) )
8988rspcva 3307 . . . . . . . . . 10  |-  ( ( ( B  +  1 )  e.  RR  /\  A. x  e.  RR  ( B  <  x  ->  E. y  e.  A  y  <  x ) )  ->  ( B  <  ( B  + 
1 )  ->  E. y  e.  A  y  <  ( B  +  1 ) ) )
9083, 84, 89sylc 65 . . . . . . . . 9  |-  ( ( ( ph  /\  x  = +oo  /\  B  < 
x )  /\  -.  B  = -oo )  ->  E. y  e.  A  y  <  ( B  + 
1 ) )
91 nfv 1843 . . . . . . . . . . . 12  |-  F/ y  B  <  x
9239, 40, 91nf3an 1831 . . . . . . . . . . 11  |-  F/ y ( ph  /\  x  = +oo  /\  B  < 
x )
93 nfv 1843 . . . . . . . . . . 11  |-  F/ y  -.  B  = -oo
9492, 93nfan 1828 . . . . . . . . . 10  |-  F/ y ( ( ph  /\  x  = +oo  /\  B  <  x )  /\  -.  B  = -oo )
95433ad2antl1 1223 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  = +oo  /\  B  < 
x )  /\  y  e.  A )  ->  y  e.  RR* )
9695ad4ant13 1292 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  x  = +oo  /\  B  <  x )  /\  -.  B  = -oo )  /\  y  e.  A
)  /\  y  <  ( B  +  1 ) )  ->  y  e.  RR* )
9780adantr 481 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  x  = +oo  /\  B  <  x )  /\  -.  B  = -oo )  /\  y  e.  A
)  ->  ( B  +  1 )  e.  RR )
9897rexrd 10089 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  x  = +oo  /\  B  <  x )  /\  -.  B  = -oo )  /\  y  e.  A
)  ->  ( B  +  1 )  e. 
RR* )
9998adantr 481 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  x  = +oo  /\  B  <  x )  /\  -.  B  = -oo )  /\  y  e.  A
)  /\  y  <  ( B  +  1 ) )  ->  ( B  +  1 )  e. 
RR* )
100503adant3 1081 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  = +oo  /\  B  <  x
)  ->  x  e.  RR* )
101100ad3antrrr 766 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  x  = +oo  /\  B  <  x )  /\  -.  B  = -oo )  /\  y  e.  A
)  /\  y  <  ( B  +  1 ) )  ->  x  e.  RR* )
102 simpr 477 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  x  = +oo  /\  B  <  x )  /\  -.  B  = -oo )  /\  y  e.  A
)  /\  y  <  ( B  +  1 ) )  ->  y  <  ( B  +  1 ) )
10380ltpnfd 11955 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  = +oo  /\  B  < 
x )  /\  -.  B  = -oo )  ->  ( B  +  1 )  < +oo )
10456adantr 481 . . . . . . . . . . . . . . . 16  |-  ( ( x  = +oo  /\  -.  B  = -oo )  -> +oo  =  x
)
1051043ad2antl2 1224 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  = +oo  /\  B  < 
x )  /\  -.  B  = -oo )  -> +oo  =  x )
106103, 105breqtrd 4679 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  = +oo  /\  B  < 
x )  /\  -.  B  = -oo )  ->  ( B  +  1 )  <  x )
107106ad2antrr 762 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  x  = +oo  /\  B  <  x )  /\  -.  B  = -oo )  /\  y  e.  A
)  /\  y  <  ( B  +  1 ) )  ->  ( B  +  1 )  < 
x )
10896, 99, 101, 102, 107xrlttrd 11990 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  x  = +oo  /\  B  <  x )  /\  -.  B  = -oo )  /\  y  e.  A
)  /\  y  <  ( B  +  1 ) )  ->  y  <  x )
109108ex 450 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  x  = +oo  /\  B  <  x )  /\  -.  B  = -oo )  /\  y  e.  A
)  ->  ( y  <  ( B  +  1 )  ->  y  <  x ) )
110109ex 450 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  = +oo  /\  B  < 
x )  /\  -.  B  = -oo )  ->  ( y  e.  A  ->  ( y  <  ( B  +  1 )  ->  y  <  x
) ) )
11194, 110reximdai 3012 . . . . . . . . 9  |-  ( ( ( ph  /\  x  = +oo  /\  B  < 
x )  /\  -.  B  = -oo )  ->  ( E. y  e.  A  y  <  ( B  +  1 )  ->  E. y  e.  A  y  <  x ) )
11290, 111mpd 15 . . . . . . . 8  |-  ( ( ( ph  /\  x  = +oo  /\  B  < 
x )  /\  -.  B  = -oo )  ->  E. y  e.  A  y  <  x )
11366, 112pm2.61dan 832 . . . . . . 7  |-  ( (
ph  /\  x  = +oo  /\  B  <  x
)  ->  E. y  e.  A  y  <  x )
1147, 21, 22, 113syl3anc 1326 . . . . . 6  |-  ( ( ( ( ph  /\  x  e.  RR* )  /\  -.  x  e.  RR )  /\  B  <  x
)  ->  E. y  e.  A  y  <  x )
115114ex 450 . . . . 5  |-  ( ( ( ph  /\  x  e.  RR* )  /\  -.  x  e.  RR )  ->  ( B  <  x  ->  E. y  e.  A  y  <  x ) )
1166, 115pm2.61dan 832 . . . 4  |-  ( (
ph  /\  x  e.  RR* )  ->  ( B  <  x  ->  E. y  e.  A  y  <  x ) )
117116ex 450 . . 3  |-  ( ph  ->  ( x  e.  RR*  ->  ( B  <  x  ->  E. y  e.  A  y  <  x ) ) )
1183, 117ralrimi 2957 . 2  |-  ( ph  ->  A. x  e.  RR*  ( B  <  x  ->  E. y  e.  A  y  <  x ) )
119 xrltso 11974 . . . . 5  |-  <  Or  RR*
120119a1i 11 . . . 4  |-  ( T. 
->  <  Or  RR* )
121120eqinf 8390 . . 3  |-  ( T. 
->  ( ( B  e. 
RR*  /\  A. x  e.  A  -.  x  <  B  /\  A. x  e.  RR*  ( B  < 
x  ->  E. y  e.  A  y  <  x ) )  -> inf ( A ,  RR* ,  <  )  =  B ) )
122121trud 1493 . 2  |-  ( ( B  e.  RR*  /\  A. x  e.  A  -.  x  <  B  /\  A. x  e.  RR*  ( B  <  x  ->  E. y  e.  A  y  <  x ) )  -> inf ( A ,  RR* ,  <  )  =  B )
1231, 2, 118, 122syl3anc 1326 1  |-  ( ph  -> inf ( A ,  RR* ,  <  )  =  B )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483   T. wtru 1484   F/wnf 1708    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913    C_ wss 3574   class class class wbr 4653    Or wor 5034  (class class class)co 6650  infcinf 8347   RRcr 9935   1c1 9937    + caddc 9939   +oocpnf 10071   -oocmnf 10072   RR*cxr 10073    < clt 10074    <_ cle 10075
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269
This theorem is referenced by:  infxrunb2  39584
  Copyright terms: Public domain W3C validator