Proof of Theorem sylow2blem1
| Step | Hyp | Ref
| Expression |
| 1 | | simp2 1062 |
. . 3
 

  |
| 2 | | sylow2b.r |
. . . . 5

~QG   |
| 3 | | ovex 6678 |
. . . . 5
 ~QG   |
| 4 | 2, 3 | eqeltri 2697 |
. . . 4
 |
| 5 | | simp3 1063 |
. . . 4
 

  |
| 6 | | ecelqsg 7802 |
. . . 4

       |
| 7 | 4, 5, 6 | sylancr 695 |
. . 3
 

      |
| 8 | | simpr 477 |
. . . . . 6
 
     |
| 9 | | simpl 473 |
. . . . . . 7
 
    |
| 10 | 9 | oveq1d 6665 |
. . . . . 6
 
  
     |
| 11 | 8, 10 | mpteq12dv 4733 |
. . . . 5
 
              |
| 12 | 11 | rneqd 5353 |
. . . 4
 
        
     |
| 13 | | sylow2b.m |
. . . 4


        |
| 14 | | ecexg 7746 |
. . . . . . 7
    |
| 15 | 4, 14 | ax-mp 5 |
. . . . . 6
   |
| 16 | 15 | mptex 6486 |
. . . . 5
       |
| 17 | 16 | rnex 7100 |
. . . 4
       |
| 18 | 12, 13, 17 | ovmpt2a 6791 |
. . 3
      
  
        |
| 19 | 1, 7, 18 | syl2anc 693 |
. 2
 

  
        |
| 20 | | sylow2b.xf |
. . . . 5
   |
| 21 | | sylow2b.k |
. . . . . . 7
 SubGrp    |
| 22 | | sylow2b.x |
. . . . . . . 8
     |
| 23 | 22, 2 | eqger 17644 |
. . . . . . 7
 SubGrp 
  |
| 24 | 21, 23 | syl 17 |
. . . . . 6
   |
| 25 | 24 | ecss 7788 |
. . . . 5
       |
| 26 | | ssfi 8180 |
. . . . 5
      
      |
| 27 | 20, 25, 26 | syl2anc 693 |
. . . 4
       |
| 28 | 27 | 3ad2ant1 1082 |
. . 3
 

      |
| 29 | | vex 3203 |
. . . . . . . 8
 |
| 30 | | elecg 7785 |
. . . . . . . 8
 
   
   |
| 31 | 29, 5, 30 | sylancr 695 |
. . . . . . 7
 

      |
| 32 | 31 | biimpa 501 |
. . . . . 6
  
     |
| 33 | | sylow2b.h |
. . . . . . . . . . . 12
 SubGrp    |
| 34 | | subgrcl 17599 |
. . . . . . . . . . . 12
 SubGrp 
  |
| 35 | 33, 34 | syl 17 |
. . . . . . . . . . 11
   |
| 36 | 35 | 3ad2ant1 1082 |
. . . . . . . . . 10
 

  |
| 37 | 22 | subgss 17595 |
. . . . . . . . . . . . 13
 SubGrp 
  |
| 38 | 33, 37 | syl 17 |
. . . . . . . . . . . 12

  |
| 39 | 38 | 3ad2ant1 1082 |
. . . . . . . . . . 11
 

  |
| 40 | 39, 1 | sseldd 3604 |
. . . . . . . . . 10
 

  |
| 41 | | sylow2b.a |
. . . . . . . . . . 11
    |
| 42 | 22, 41 | grpcl 17430 |
. . . . . . . . . 10
 
     |
| 43 | 36, 40, 5, 42 | syl3anc 1326 |
. . . . . . . . 9
 

    |
| 44 | 43 | adantr 481 |
. . . . . . . 8
  
      |
| 45 | 36 | adantr 481 |
. . . . . . . . 9
  
    |
| 46 | 40 | adantr 481 |
. . . . . . . . 9
  
    |
| 47 | 22 | subgss 17595 |
. . . . . . . . . . . . . 14
 SubGrp 
  |
| 48 | 21, 47 | syl 17 |
. . . . . . . . . . . . 13

  |
| 49 | | eqid 2622 |
. . . . . . . . . . . . . 14
           |
| 50 | 22, 49, 41, 2 | eqgval 17643 |
. . . . . . . . . . . . 13
    
               |
| 51 | 35, 48, 50 | syl2anc 693 |
. . . . . . . . . . . 12
  
               |
| 52 | 51 | 3ad2ant1 1082 |
. . . . . . . . . . 11
 


          
     |
| 53 | 52 | biimpa 501 |
. . . . . . . . . 10
  
  
              |
| 54 | 53 | simp2d 1074 |
. . . . . . . . 9
  
    |
| 55 | 22, 41 | grpcl 17430 |
. . . . . . . . 9
 
     |
| 56 | 45, 46, 54, 55 | syl3anc 1326 |
. . . . . . . 8
  
      |
| 57 | 22, 49 | grpinvcl 17467 |
. . . . . . . . . . . . 13
  
               |
| 58 | 36, 43, 57 | syl2anc 693 |
. . . . . . . . . . . 12
 

             |
| 59 | 58 | adantr 481 |
. . . . . . . . . . 11
  
               |
| 60 | 22, 41 | grpass 17431 |
. . . . . . . . . . 11
                                                |
| 61 | 45, 59, 46, 54, 60 | syl13anc 1328 |
. . . . . . . . . 10
  
                                  |
| 62 | 22, 41, 49 | grpinvadd 17493 |
. . . . . . . . . . . . . . . 16
 
                                  |
| 63 | 36, 40, 5, 62 | syl3anc 1326 |
. . . . . . . . . . . . . . 15
 

                                 |
| 64 | 22, 49 | grpinvcl 17467 |
. . . . . . . . . . . . . . . . 17
 
            |
| 65 | 36, 5, 64 | syl2anc 693 |
. . . . . . . . . . . . . . . 16
 

           |
| 66 | | eqid 2622 |
. . . . . . . . . . . . . . . . 17
         |
| 67 | 22, 41, 49, 66 | grpsubval 17465 |
. . . . . . . . . . . . . . . 16
          
                           
            |
| 68 | 65, 40, 67 | syl2anc 693 |
. . . . . . . . . . . . . . 15
 

                                       |
| 69 | 63, 68 | eqtr4d 2659 |
. . . . . . . . . . . . . 14
 

                              |
| 70 | 69 | oveq1d 6665 |
. . . . . . . . . . . . 13
 

                                  |
| 71 | 22, 41, 66 | grpnpcan 17507 |
. . . . . . . . . . . . . 14
          
                               |
| 72 | 36, 65, 40, 71 | syl3anc 1326 |
. . . . . . . . . . . . 13
 

                              |
| 73 | 70, 72 | eqtrd 2656 |
. . . . . . . . . . . 12
 

                        |
| 74 | 73 | oveq1d 6665 |
. . . . . . . . . . 11
 

                        
   |
| 75 | 74 | adantr 481 |
. . . . . . . . . 10
  
                          
   |
| 76 | 61, 75 | eqtr3d 2658 |
. . . . . . . . 9
  
                              |
| 77 | 53 | simp3d 1075 |
. . . . . . . . 9
  
           
   |
| 78 | 76, 77 | eqeltrd 2701 |
. . . . . . . 8
  
                   |
| 79 | 22, 49, 41, 2 | eqgval 17643 |
. . . . . . . . . . 11
       
                        |
| 80 | 35, 48, 79 | syl2anc 693 |
. . . . . . . . . 10
     
                        |
| 81 | 80 | 3ad2ant1 1082 |
. . . . . . . . 9
 

   
                  
      |
| 82 | 81 | adantr 481 |
. . . . . . . 8
  
    
 
                        |
| 83 | 44, 56, 78, 82 | mpbir3and 1245 |
. . . . . . 7
  
    
   |
| 84 | | ovex 6678 |
. . . . . . . 8
   |
| 85 | | ovex 6678 |
. . . . . . . 8
   |
| 86 | 84, 85 | elec 7786 |
. . . . . . 7
             |
| 87 | 83, 86 | sylibr 224 |
. . . . . 6
  
         |
| 88 | 32, 87 | syldan 487 |
. . . . 5
  
          |
| 89 | | eqid 2622 |
. . . . 5
        
    |
| 90 | 88, 89 | fmptd 6385 |
. . . 4
 

   
            |
| 91 | | frn 6053 |
. . . 4
                   
 
     |
| 92 | 90, 91 | syl 17 |
. . 3
 

           |
| 93 | | eqid 2622 |
. . . . . . . . . . 11
         |
| 94 | 22, 41, 93 | grplmulf1o 17489 |
. . . . . . . . . 10
 
           |
| 95 | 36, 40, 94 | syl2anc 693 |
. . . . . . . . 9
 


         |
| 96 | | f1of1 6136 |
. . . . . . . . 9
                   |
| 97 | 95, 96 | syl 17 |
. . . . . . . 8
 


         |
| 98 | 24 | ecss 7788 |
. . . . . . . . 9
     |
| 99 | 98 | 3ad2ant1 1082 |
. . . . . . . 8
 

 
  |
| 100 | | f1ssres 6108 |
. . . . . . . 8
                           |
| 101 | 97, 99, 100 | syl2anc 693 |
. . . . . . 7
 

    
     
   |
| 102 | | resmpt 5449 |
. . . . . . . 8
             
    |
| 103 | | f1eq1 6096 |
. . . . . . . 8
                              
          |
| 104 | 99, 102, 103 | 3syl 18 |
. . . . . . 7
 

           

   
          |
| 105 | 101, 104 | mpbid 222 |
. . . . . 6
 

   
         |
| 106 | | f1f1orn 6148 |
. . . . . 6
               
         
     |
| 107 | 105, 106 | syl 17 |
. . . . 5
 

   
         
     |
| 108 | 15 | f1oen 7976 |
. . . . 5
              
             |
| 109 | | ensym 8005 |
. . . . 5
     
  
   
     |
| 110 | 107, 108,
109 | 3syl 18 |
. . . 4
 

         |
| 111 | 21 | 3ad2ant1 1082 |
. . . . . . 7
 

SubGrp    |
| 112 | 22, 2 | eqgen 17647 |
. . . . . . 7
  SubGrp   
  
   |
| 113 | 111, 7, 112 | syl2anc 693 |
. . . . . 6
 

   |
| 114 | | ensym 8005 |
. . . . . 6
       |
| 115 | 113, 114 | syl 17 |
. . . . 5
 

    |
| 116 | | ecelqsg 7802 |
. . . . . . 7
 
          |
| 117 | 4, 43, 116 | sylancr 695 |
. . . . . 6
 

        |
| 118 | 22, 2 | eqgen 17647 |
. . . . . 6
  SubGrp        
     |
| 119 | 111, 117,
118 | syl2anc 693 |
. . . . 5
 

     |
| 120 | | entr 8008 |
. . . . 5
               |
| 121 | 115, 119,
120 | syl2anc 693 |
. . . 4
 

       |
| 122 | | entr 8008 |
. . . 4
     
            
        |
| 123 | 110, 121,
122 | syl2anc 693 |
. . 3
 

           |
| 124 | | fisseneq 8171 |
. . 3
                  
         
        |
| 125 | 28, 92, 123, 124 | syl3anc 1326 |
. 2
 

           |
| 126 | 19, 125 | eqtrd 2656 |
1
 

  
     |