MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oacomf1olem Structured version   Visualization version   Unicode version

Theorem oacomf1olem 7644
Description: Lemma for oacomf1o 7645. (Contributed by Mario Carneiro, 30-May-2015.)
Hypothesis
Ref Expression
oacomf1olem.1  |-  F  =  ( x  e.  A  |->  ( B  +o  x
) )
Assertion
Ref Expression
oacomf1olem  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( F : A -1-1-onto-> ran  F  /\  ( ran  F  i^i  B )  =  (/) ) )
Distinct variable groups:    x, A    x, B
Allowed substitution hint:    F( x)

Proof of Theorem oacomf1olem
StepHypRef Expression
1 oaf1o 7643 . . . . . . 7  |-  ( B  e.  On  ->  (
x  e.  On  |->  ( B  +o  x ) ) : On -1-1-onto-> ( On  \  B
) )
21adantl 482 . . . . . 6  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( x  e.  On  |->  ( B  +o  x
) ) : On -1-1-onto-> ( On  \  B ) )
3 f1of1 6136 . . . . . 6  |-  ( ( x  e.  On  |->  ( B  +o  x ) ) : On -1-1-onto-> ( On  \  B
)  ->  ( x  e.  On  |->  ( B  +o  x ) ) : On -1-1-> ( On  \  B ) )
42, 3syl 17 . . . . 5  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( x  e.  On  |->  ( B  +o  x
) ) : On -1-1-> ( On  \  B ) )
5 onss 6990 . . . . . 6  |-  ( A  e.  On  ->  A  C_  On )
65adantr 481 . . . . 5  |-  ( ( A  e.  On  /\  B  e.  On )  ->  A  C_  On )
7 f1ssres 6108 . . . . 5  |-  ( ( ( x  e.  On  |->  ( B  +o  x
) ) : On -1-1-> ( On  \  B )  /\  A  C_  On )  ->  ( ( x  e.  On  |->  ( B  +o  x ) )  |`  A ) : A -1-1-> ( On  \  B ) )
84, 6, 7syl2anc 693 . . . 4  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( ( x  e.  On  |->  ( B  +o  x ) )  |`  A ) : A -1-1-> ( On  \  B ) )
96resmptd 5452 . . . . . 6  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( ( x  e.  On  |->  ( B  +o  x ) )  |`  A )  =  ( x  e.  A  |->  ( B  +o  x ) ) )
10 oacomf1olem.1 . . . . . 6  |-  F  =  ( x  e.  A  |->  ( B  +o  x
) )
119, 10syl6eqr 2674 . . . . 5  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( ( x  e.  On  |->  ( B  +o  x ) )  |`  A )  =  F )
12 f1eq1 6096 . . . . 5  |-  ( ( ( x  e.  On  |->  ( B  +o  x
) )  |`  A )  =  F  ->  (
( ( x  e.  On  |->  ( B  +o  x ) )  |`  A ) : A -1-1-> ( On  \  B )  <-> 
F : A -1-1-> ( On  \  B ) ) )
1311, 12syl 17 . . . 4  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( ( ( x  e.  On  |->  ( B  +o  x ) )  |`  A ) : A -1-1-> ( On  \  B )  <-> 
F : A -1-1-> ( On  \  B ) ) )
148, 13mpbid 222 . . 3  |-  ( ( A  e.  On  /\  B  e.  On )  ->  F : A -1-1-> ( On  \  B ) )
15 f1f1orn 6148 . . 3  |-  ( F : A -1-1-> ( On 
\  B )  ->  F : A -1-1-onto-> ran  F )
1614, 15syl 17 . 2  |-  ( ( A  e.  On  /\  B  e.  On )  ->  F : A -1-1-onto-> ran  F
)
17 f1f 6101 . . . 4  |-  ( F : A -1-1-> ( On 
\  B )  ->  F : A --> ( On 
\  B ) )
18 frn 6053 . . . 4  |-  ( F : A --> ( On 
\  B )  ->  ran  F  C_  ( On  \  B ) )
1914, 17, 183syl 18 . . 3  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ran  F  C_  ( On  \  B ) )
2019difss2d 3740 . . . 4  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ran  F  C_  On )
21 reldisj 4020 . . . 4  |-  ( ran 
F  C_  On  ->  ( ( ran  F  i^i  B )  =  (/)  <->  ran  F  C_  ( On  \  B ) ) )
2220, 21syl 17 . . 3  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( ( ran  F  i^i  B )  =  (/)  <->  ran  F 
C_  ( On  \  B ) ) )
2319, 22mpbird 247 . 2  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( ran  F  i^i  B )  =  (/) )
2416, 23jca 554 1  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( F : A -1-1-onto-> ran  F  /\  ( ran  F  i^i  B )  =  (/) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    \ cdif 3571    i^i cin 3573    C_ wss 3574   (/)c0 3915    |-> cmpt 4729   ran crn 5115    |` cres 5116   Oncon0 5723   -->wf 5884   -1-1->wf1 5885   -1-1-onto->wf1o 5887  (class class class)co 6650    +o coa 7557
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-oadd 7564
This theorem is referenced by:  oacomf1o  7645  onacda  9019
  Copyright terms: Public domain W3C validator