MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmhmeql Structured version   Visualization version   Unicode version

Theorem lmhmeql 19055
Description: The equalizer of two module homomorphisms is a subspace. (Contributed by Stefan O'Rear, 7-Mar-2015.)
Hypothesis
Ref Expression
lmhmeql.u  |-  U  =  ( LSubSp `  S )
Assertion
Ref Expression
lmhmeql  |-  ( ( F  e.  ( S LMHom 
T )  /\  G  e.  ( S LMHom  T ) )  ->  dom  ( F  i^i  G )  e.  U )

Proof of Theorem lmhmeql
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmghm 19031 . . 3  |-  ( F  e.  ( S LMHom  T
)  ->  F  e.  ( S  GrpHom  T ) )
2 lmghm 19031 . . 3  |-  ( G  e.  ( S LMHom  T
)  ->  G  e.  ( S  GrpHom  T ) )
3 ghmeql 17683 . . 3  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  G  e.  ( S  GrpHom  T ) )  ->  dom  ( F  i^i  G )  e.  (SubGrp `  S )
)
41, 2, 3syl2an 494 . 2  |-  ( ( F  e.  ( S LMHom 
T )  /\  G  e.  ( S LMHom  T ) )  ->  dom  ( F  i^i  G )  e.  (SubGrp `  S )
)
5 lmhmlmod1 19033 . . . . . . . . . 10  |-  ( F  e.  ( S LMHom  T
)  ->  S  e.  LMod )
65adantr 481 . . . . . . . . 9  |-  ( ( F  e.  ( S LMHom 
T )  /\  G  e.  ( S LMHom  T ) )  ->  S  e.  LMod )
76ad2antrr 762 . . . . . . . 8  |-  ( ( ( ( F  e.  ( S LMHom  T )  /\  G  e.  ( S LMHom  T ) )  /\  x  e.  (
Base `  (Scalar `  S
) ) )  /\  ( y  e.  (
Base `  S )  /\  ( F `  y
)  =  ( G `
 y ) ) )  ->  S  e.  LMod )
8 simplr 792 . . . . . . . 8  |-  ( ( ( ( F  e.  ( S LMHom  T )  /\  G  e.  ( S LMHom  T ) )  /\  x  e.  (
Base `  (Scalar `  S
) ) )  /\  ( y  e.  (
Base `  S )  /\  ( F `  y
)  =  ( G `
 y ) ) )  ->  x  e.  ( Base `  (Scalar `  S
) ) )
9 simprl 794 . . . . . . . 8  |-  ( ( ( ( F  e.  ( S LMHom  T )  /\  G  e.  ( S LMHom  T ) )  /\  x  e.  (
Base `  (Scalar `  S
) ) )  /\  ( y  e.  (
Base `  S )  /\  ( F `  y
)  =  ( G `
 y ) ) )  ->  y  e.  ( Base `  S )
)
10 eqid 2622 . . . . . . . . 9  |-  ( Base `  S )  =  (
Base `  S )
11 eqid 2622 . . . . . . . . 9  |-  (Scalar `  S )  =  (Scalar `  S )
12 eqid 2622 . . . . . . . . 9  |-  ( .s
`  S )  =  ( .s `  S
)
13 eqid 2622 . . . . . . . . 9  |-  ( Base `  (Scalar `  S )
)  =  ( Base `  (Scalar `  S )
)
1410, 11, 12, 13lmodvscl 18880 . . . . . . . 8  |-  ( ( S  e.  LMod  /\  x  e.  ( Base `  (Scalar `  S ) )  /\  y  e.  ( Base `  S ) )  -> 
( x ( .s
`  S ) y )  e.  ( Base `  S ) )
157, 8, 9, 14syl3anc 1326 . . . . . . 7  |-  ( ( ( ( F  e.  ( S LMHom  T )  /\  G  e.  ( S LMHom  T ) )  /\  x  e.  (
Base `  (Scalar `  S
) ) )  /\  ( y  e.  (
Base `  S )  /\  ( F `  y
)  =  ( G `
 y ) ) )  ->  ( x
( .s `  S
) y )  e.  ( Base `  S
) )
16 oveq2 6658 . . . . . . . . 9  |-  ( ( F `  y )  =  ( G `  y )  ->  (
x ( .s `  T ) ( F `
 y ) )  =  ( x ( .s `  T ) ( G `  y
) ) )
1716ad2antll 765 . . . . . . . 8  |-  ( ( ( ( F  e.  ( S LMHom  T )  /\  G  e.  ( S LMHom  T ) )  /\  x  e.  (
Base `  (Scalar `  S
) ) )  /\  ( y  e.  (
Base `  S )  /\  ( F `  y
)  =  ( G `
 y ) ) )  ->  ( x
( .s `  T
) ( F `  y ) )  =  ( x ( .s
`  T ) ( G `  y ) ) )
18 simplll 798 . . . . . . . . 9  |-  ( ( ( ( F  e.  ( S LMHom  T )  /\  G  e.  ( S LMHom  T ) )  /\  x  e.  (
Base `  (Scalar `  S
) ) )  /\  ( y  e.  (
Base `  S )  /\  ( F `  y
)  =  ( G `
 y ) ) )  ->  F  e.  ( S LMHom  T ) )
19 eqid 2622 . . . . . . . . . 10  |-  ( .s
`  T )  =  ( .s `  T
)
2011, 13, 10, 12, 19lmhmlin 19035 . . . . . . . . 9  |-  ( ( F  e.  ( S LMHom 
T )  /\  x  e.  ( Base `  (Scalar `  S ) )  /\  y  e.  ( Base `  S ) )  -> 
( F `  (
x ( .s `  S ) y ) )  =  ( x ( .s `  T
) ( F `  y ) ) )
2118, 8, 9, 20syl3anc 1326 . . . . . . . 8  |-  ( ( ( ( F  e.  ( S LMHom  T )  /\  G  e.  ( S LMHom  T ) )  /\  x  e.  (
Base `  (Scalar `  S
) ) )  /\  ( y  e.  (
Base `  S )  /\  ( F `  y
)  =  ( G `
 y ) ) )  ->  ( F `  ( x ( .s
`  S ) y ) )  =  ( x ( .s `  T ) ( F `
 y ) ) )
22 simpllr 799 . . . . . . . . 9  |-  ( ( ( ( F  e.  ( S LMHom  T )  /\  G  e.  ( S LMHom  T ) )  /\  x  e.  (
Base `  (Scalar `  S
) ) )  /\  ( y  e.  (
Base `  S )  /\  ( F `  y
)  =  ( G `
 y ) ) )  ->  G  e.  ( S LMHom  T ) )
2311, 13, 10, 12, 19lmhmlin 19035 . . . . . . . . 9  |-  ( ( G  e.  ( S LMHom 
T )  /\  x  e.  ( Base `  (Scalar `  S ) )  /\  y  e.  ( Base `  S ) )  -> 
( G `  (
x ( .s `  S ) y ) )  =  ( x ( .s `  T
) ( G `  y ) ) )
2422, 8, 9, 23syl3anc 1326 . . . . . . . 8  |-  ( ( ( ( F  e.  ( S LMHom  T )  /\  G  e.  ( S LMHom  T ) )  /\  x  e.  (
Base `  (Scalar `  S
) ) )  /\  ( y  e.  (
Base `  S )  /\  ( F `  y
)  =  ( G `
 y ) ) )  ->  ( G `  ( x ( .s
`  S ) y ) )  =  ( x ( .s `  T ) ( G `
 y ) ) )
2517, 21, 243eqtr4d 2666 . . . . . . 7  |-  ( ( ( ( F  e.  ( S LMHom  T )  /\  G  e.  ( S LMHom  T ) )  /\  x  e.  (
Base `  (Scalar `  S
) ) )  /\  ( y  e.  (
Base `  S )  /\  ( F `  y
)  =  ( G `
 y ) ) )  ->  ( F `  ( x ( .s
`  S ) y ) )  =  ( G `  ( x ( .s `  S
) y ) ) )
26 fveq2 6191 . . . . . . . . 9  |-  ( z  =  ( x ( .s `  S ) y )  ->  ( F `  z )  =  ( F `  ( x ( .s
`  S ) y ) ) )
27 fveq2 6191 . . . . . . . . 9  |-  ( z  =  ( x ( .s `  S ) y )  ->  ( G `  z )  =  ( G `  ( x ( .s
`  S ) y ) ) )
2826, 27eqeq12d 2637 . . . . . . . 8  |-  ( z  =  ( x ( .s `  S ) y )  ->  (
( F `  z
)  =  ( G `
 z )  <->  ( F `  ( x ( .s
`  S ) y ) )  =  ( G `  ( x ( .s `  S
) y ) ) ) )
2928elrab 3363 . . . . . . 7  |-  ( ( x ( .s `  S ) y )  e.  { z  e.  ( Base `  S
)  |  ( F `
 z )  =  ( G `  z
) }  <->  ( (
x ( .s `  S ) y )  e.  ( Base `  S
)  /\  ( F `  ( x ( .s
`  S ) y ) )  =  ( G `  ( x ( .s `  S
) y ) ) ) )
3015, 25, 29sylanbrc 698 . . . . . 6  |-  ( ( ( ( F  e.  ( S LMHom  T )  /\  G  e.  ( S LMHom  T ) )  /\  x  e.  (
Base `  (Scalar `  S
) ) )  /\  ( y  e.  (
Base `  S )  /\  ( F `  y
)  =  ( G `
 y ) ) )  ->  ( x
( .s `  S
) y )  e. 
{ z  e.  (
Base `  S )  |  ( F `  z )  =  ( G `  z ) } )
3130expr 643 . . . . 5  |-  ( ( ( ( F  e.  ( S LMHom  T )  /\  G  e.  ( S LMHom  T ) )  /\  x  e.  (
Base `  (Scalar `  S
) ) )  /\  y  e.  ( Base `  S ) )  -> 
( ( F `  y )  =  ( G `  y )  ->  ( x ( .s `  S ) y )  e.  {
z  e.  ( Base `  S )  |  ( F `  z )  =  ( G `  z ) } ) )
3231ralrimiva 2966 . . . 4  |-  ( ( ( F  e.  ( S LMHom  T )  /\  G  e.  ( S LMHom  T ) )  /\  x  e.  ( Base `  (Scalar `  S ) ) )  ->  A. y  e.  (
Base `  S )
( ( F `  y )  =  ( G `  y )  ->  ( x ( .s `  S ) y )  e.  {
z  e.  ( Base `  S )  |  ( F `  z )  =  ( G `  z ) } ) )
33 eqid 2622 . . . . . . . . 9  |-  ( Base `  T )  =  (
Base `  T )
3410, 33lmhmf 19034 . . . . . . . 8  |-  ( F  e.  ( S LMHom  T
)  ->  F :
( Base `  S ) --> ( Base `  T )
)
35 ffn 6045 . . . . . . . 8  |-  ( F : ( Base `  S
) --> ( Base `  T
)  ->  F  Fn  ( Base `  S )
)
3634, 35syl 17 . . . . . . 7  |-  ( F  e.  ( S LMHom  T
)  ->  F  Fn  ( Base `  S )
)
3710, 33lmhmf 19034 . . . . . . . 8  |-  ( G  e.  ( S LMHom  T
)  ->  G :
( Base `  S ) --> ( Base `  T )
)
38 ffn 6045 . . . . . . . 8  |-  ( G : ( Base `  S
) --> ( Base `  T
)  ->  G  Fn  ( Base `  S )
)
3937, 38syl 17 . . . . . . 7  |-  ( G  e.  ( S LMHom  T
)  ->  G  Fn  ( Base `  S )
)
40 fndmin 6324 . . . . . . 7  |-  ( ( F  Fn  ( Base `  S )  /\  G  Fn  ( Base `  S
) )  ->  dom  ( F  i^i  G )  =  { z  e.  ( Base `  S
)  |  ( F `
 z )  =  ( G `  z
) } )
4136, 39, 40syl2an 494 . . . . . 6  |-  ( ( F  e.  ( S LMHom 
T )  /\  G  e.  ( S LMHom  T ) )  ->  dom  ( F  i^i  G )  =  { z  e.  (
Base `  S )  |  ( F `  z )  =  ( G `  z ) } )
4241adantr 481 . . . . 5  |-  ( ( ( F  e.  ( S LMHom  T )  /\  G  e.  ( S LMHom  T ) )  /\  x  e.  ( Base `  (Scalar `  S ) ) )  ->  dom  ( F  i^i  G )  =  {
z  e.  ( Base `  S )  |  ( F `  z )  =  ( G `  z ) } )
43 eleq2 2690 . . . . . . 7  |-  ( dom  ( F  i^i  G
)  =  { z  e.  ( Base `  S
)  |  ( F `
 z )  =  ( G `  z
) }  ->  (
( x ( .s
`  S ) y )  e.  dom  ( F  i^i  G )  <->  ( x
( .s `  S
) y )  e. 
{ z  e.  (
Base `  S )  |  ( F `  z )  =  ( G `  z ) } ) )
4443raleqbi1dv 3146 . . . . . 6  |-  ( dom  ( F  i^i  G
)  =  { z  e.  ( Base `  S
)  |  ( F `
 z )  =  ( G `  z
) }  ->  ( A. y  e.  dom  ( F  i^i  G ) ( x ( .s
`  S ) y )  e.  dom  ( F  i^i  G )  <->  A. y  e.  { z  e.  (
Base `  S )  |  ( F `  z )  =  ( G `  z ) }  ( x ( .s `  S ) y )  e.  {
z  e.  ( Base `  S )  |  ( F `  z )  =  ( G `  z ) } ) )
45 fveq2 6191 . . . . . . . 8  |-  ( z  =  y  ->  ( F `  z )  =  ( F `  y ) )
46 fveq2 6191 . . . . . . . 8  |-  ( z  =  y  ->  ( G `  z )  =  ( G `  y ) )
4745, 46eqeq12d 2637 . . . . . . 7  |-  ( z  =  y  ->  (
( F `  z
)  =  ( G `
 z )  <->  ( F `  y )  =  ( G `  y ) ) )
4847ralrab 3368 . . . . . 6  |-  ( A. y  e.  { z  e.  ( Base `  S
)  |  ( F `
 z )  =  ( G `  z
) }  ( x ( .s `  S
) y )  e. 
{ z  e.  (
Base `  S )  |  ( F `  z )  =  ( G `  z ) }  <->  A. y  e.  (
Base `  S )
( ( F `  y )  =  ( G `  y )  ->  ( x ( .s `  S ) y )  e.  {
z  e.  ( Base `  S )  |  ( F `  z )  =  ( G `  z ) } ) )
4944, 48syl6bb 276 . . . . 5  |-  ( dom  ( F  i^i  G
)  =  { z  e.  ( Base `  S
)  |  ( F `
 z )  =  ( G `  z
) }  ->  ( A. y  e.  dom  ( F  i^i  G ) ( x ( .s
`  S ) y )  e.  dom  ( F  i^i  G )  <->  A. y  e.  ( Base `  S
) ( ( F `
 y )  =  ( G `  y
)  ->  ( x
( .s `  S
) y )  e. 
{ z  e.  (
Base `  S )  |  ( F `  z )  =  ( G `  z ) } ) ) )
5042, 49syl 17 . . . 4  |-  ( ( ( F  e.  ( S LMHom  T )  /\  G  e.  ( S LMHom  T ) )  /\  x  e.  ( Base `  (Scalar `  S ) ) )  ->  ( A. y  e.  dom  ( F  i^i  G ) ( x ( .s `  S ) y )  e.  dom  ( F  i^i  G )  <->  A. y  e.  ( Base `  S ) ( ( F `  y
)  =  ( G `
 y )  -> 
( x ( .s
`  S ) y )  e.  { z  e.  ( Base `  S
)  |  ( F `
 z )  =  ( G `  z
) } ) ) )
5132, 50mpbird 247 . . 3  |-  ( ( ( F  e.  ( S LMHom  T )  /\  G  e.  ( S LMHom  T ) )  /\  x  e.  ( Base `  (Scalar `  S ) ) )  ->  A. y  e.  dom  ( F  i^i  G ) ( x ( .s
`  S ) y )  e.  dom  ( F  i^i  G ) )
5251ralrimiva 2966 . 2  |-  ( ( F  e.  ( S LMHom 
T )  /\  G  e.  ( S LMHom  T ) )  ->  A. x  e.  ( Base `  (Scalar `  S ) ) A. y  e.  dom  ( F  i^i  G ) ( x ( .s `  S ) y )  e.  dom  ( F  i^i  G ) )
53 lmhmeql.u . . . 4  |-  U  =  ( LSubSp `  S )
5411, 13, 10, 12, 53islss4 18962 . . 3  |-  ( S  e.  LMod  ->  ( dom  ( F  i^i  G
)  e.  U  <->  ( dom  ( F  i^i  G )  e.  (SubGrp `  S
)  /\  A. x  e.  ( Base `  (Scalar `  S ) ) A. y  e.  dom  ( F  i^i  G ) ( x ( .s `  S ) y )  e.  dom  ( F  i^i  G ) ) ) )
556, 54syl 17 . 2  |-  ( ( F  e.  ( S LMHom 
T )  /\  G  e.  ( S LMHom  T ) )  ->  ( dom  ( F  i^i  G )  e.  U  <->  ( dom  ( F  i^i  G )  e.  (SubGrp `  S
)  /\  A. x  e.  ( Base `  (Scalar `  S ) ) A. y  e.  dom  ( F  i^i  G ) ( x ( .s `  S ) y )  e.  dom  ( F  i^i  G ) ) ) )
564, 52, 55mpbir2and 957 1  |-  ( ( F  e.  ( S LMHom 
T )  /\  G  e.  ( S LMHom  T ) )  ->  dom  ( F  i^i  G )  e.  U )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   {crab 2916    i^i cin 3573   dom cdm 5114    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650   Basecbs 15857  Scalarcsca 15944   .scvsca 15945  SubGrpcsubg 17588    GrpHom cghm 17657   LModclmod 18863   LSubSpclss 18932   LMHom clmhm 19019
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-submnd 17336  df-grp 17425  df-minusg 17426  df-sbg 17427  df-subg 17591  df-ghm 17658  df-mgp 18490  df-ur 18502  df-ring 18549  df-lmod 18865  df-lss 18933  df-lmhm 19022
This theorem is referenced by:  lspextmo  19056
  Copyright terms: Public domain W3C validator