| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ghmeql | Structured version Visualization version Unicode version | ||
| Description: The equalizer of two group homomorphisms is a subgroup. (Contributed by Stefan O'Rear, 7-Mar-2015.) (Revised by Mario Carneiro, 6-May-2015.) |
| Ref | Expression |
|---|---|
| ghmeql |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ghmmhm 17670 |
. . 3
| |
| 2 | ghmmhm 17670 |
. . 3
| |
| 3 | mhmeql 17364 |
. . 3
| |
| 4 | 1, 2, 3 | syl2an 494 |
. 2
|
| 5 | ghmgrp1 17662 |
. . . . . . . . . 10
| |
| 6 | 5 | adantr 481 |
. . . . . . . . 9
|
| 7 | 6 | adantr 481 |
. . . . . . . 8
|
| 8 | simprl 794 |
. . . . . . . 8
| |
| 9 | eqid 2622 |
. . . . . . . . 9
| |
| 10 | eqid 2622 |
. . . . . . . . 9
| |
| 11 | 9, 10 | grpinvcl 17467 |
. . . . . . . 8
|
| 12 | 7, 8, 11 | syl2anc 693 |
. . . . . . 7
|
| 13 | simprr 796 |
. . . . . . . . 9
| |
| 14 | 13 | fveq2d 6195 |
. . . . . . . 8
|
| 15 | eqid 2622 |
. . . . . . . . . 10
| |
| 16 | 9, 10, 15 | ghminv 17667 |
. . . . . . . . 9
|
| 17 | 16 | ad2ant2r 783 |
. . . . . . . 8
|
| 18 | 9, 10, 15 | ghminv 17667 |
. . . . . . . . 9
|
| 19 | 18 | ad2ant2lr 784 |
. . . . . . . 8
|
| 20 | 14, 17, 19 | 3eqtr4d 2666 |
. . . . . . 7
|
| 21 | fveq2 6191 |
. . . . . . . . 9
| |
| 22 | fveq2 6191 |
. . . . . . . . 9
| |
| 23 | 21, 22 | eqeq12d 2637 |
. . . . . . . 8
|
| 24 | 23 | elrab 3363 |
. . . . . . 7
|
| 25 | 12, 20, 24 | sylanbrc 698 |
. . . . . 6
|
| 26 | 25 | expr 643 |
. . . . 5
|
| 27 | 26 | ralrimiva 2966 |
. . . 4
|
| 28 | fveq2 6191 |
. . . . . 6
| |
| 29 | fveq2 6191 |
. . . . . 6
| |
| 30 | 28, 29 | eqeq12d 2637 |
. . . . 5
|
| 31 | 30 | ralrab 3368 |
. . . 4
|
| 32 | 27, 31 | sylibr 224 |
. . 3
|
| 33 | eqid 2622 |
. . . . . . . 8
| |
| 34 | 9, 33 | ghmf 17664 |
. . . . . . 7
|
| 35 | 34 | adantr 481 |
. . . . . 6
|
| 36 | ffn 6045 |
. . . . . 6
| |
| 37 | 35, 36 | syl 17 |
. . . . 5
|
| 38 | 9, 33 | ghmf 17664 |
. . . . . . 7
|
| 39 | 38 | adantl 482 |
. . . . . 6
|
| 40 | ffn 6045 |
. . . . . 6
| |
| 41 | 39, 40 | syl 17 |
. . . . 5
|
| 42 | fndmin 6324 |
. . . . 5
| |
| 43 | 37, 41, 42 | syl2anc 693 |
. . . 4
|
| 44 | eleq2 2690 |
. . . . 5
| |
| 45 | 44 | raleqbi1dv 3146 |
. . . 4
|
| 46 | 43, 45 | syl 17 |
. . 3
|
| 47 | 32, 46 | mpbird 247 |
. 2
|
| 48 | 10 | issubg3 17612 |
. . 3
|
| 49 | 6, 48 | syl 17 |
. 2
|
| 50 | 4, 47, 49 | mpbir2and 957 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-map 7859 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-2 11079 df-ndx 15860 df-slot 15861 df-base 15863 df-sets 15864 df-ress 15865 df-plusg 15954 df-0g 16102 df-mgm 17242 df-sgrp 17284 df-mnd 17295 df-mhm 17335 df-submnd 17336 df-grp 17425 df-minusg 17426 df-subg 17591 df-ghm 17658 |
| This theorem is referenced by: rhmeql 18810 lmhmeql 19055 |
| Copyright terms: Public domain | W3C validator |