MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ghmeql Structured version   Visualization version   Unicode version

Theorem ghmeql 17683
Description: The equalizer of two group homomorphisms is a subgroup. (Contributed by Stefan O'Rear, 7-Mar-2015.) (Revised by Mario Carneiro, 6-May-2015.)
Assertion
Ref Expression
ghmeql  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  G  e.  ( S  GrpHom  T ) )  ->  dom  ( F  i^i  G )  e.  (SubGrp `  S )
)

Proof of Theorem ghmeql
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ghmmhm 17670 . . 3  |-  ( F  e.  ( S  GrpHom  T )  ->  F  e.  ( S MndHom  T ) )
2 ghmmhm 17670 . . 3  |-  ( G  e.  ( S  GrpHom  T )  ->  G  e.  ( S MndHom  T ) )
3 mhmeql 17364 . . 3  |-  ( ( F  e.  ( S MndHom  T )  /\  G  e.  ( S MndHom  T ) )  ->  dom  ( F  i^i  G )  e.  (SubMnd `  S )
)
41, 2, 3syl2an 494 . 2  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  G  e.  ( S  GrpHom  T ) )  ->  dom  ( F  i^i  G )  e.  (SubMnd `  S )
)
5 ghmgrp1 17662 . . . . . . . . . 10  |-  ( F  e.  ( S  GrpHom  T )  ->  S  e.  Grp )
65adantr 481 . . . . . . . . 9  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  G  e.  ( S  GrpHom  T ) )  ->  S  e.  Grp )
76adantr 481 . . . . . . . 8  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  G  e.  ( S  GrpHom  T ) )  /\  ( x  e.  ( Base `  S )  /\  ( F `  x )  =  ( G `  x ) ) )  ->  S  e.  Grp )
8 simprl 794 . . . . . . . 8  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  G  e.  ( S  GrpHom  T ) )  /\  ( x  e.  ( Base `  S )  /\  ( F `  x )  =  ( G `  x ) ) )  ->  x  e.  (
Base `  S )
)
9 eqid 2622 . . . . . . . . 9  |-  ( Base `  S )  =  (
Base `  S )
10 eqid 2622 . . . . . . . . 9  |-  ( invg `  S )  =  ( invg `  S )
119, 10grpinvcl 17467 . . . . . . . 8  |-  ( ( S  e.  Grp  /\  x  e.  ( Base `  S ) )  -> 
( ( invg `  S ) `  x
)  e.  ( Base `  S ) )
127, 8, 11syl2anc 693 . . . . . . 7  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  G  e.  ( S  GrpHom  T ) )  /\  ( x  e.  ( Base `  S )  /\  ( F `  x )  =  ( G `  x ) ) )  ->  ( ( invg `  S ) `
 x )  e.  ( Base `  S
) )
13 simprr 796 . . . . . . . . 9  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  G  e.  ( S  GrpHom  T ) )  /\  ( x  e.  ( Base `  S )  /\  ( F `  x )  =  ( G `  x ) ) )  ->  ( F `  x )  =  ( G `  x ) )
1413fveq2d 6195 . . . . . . . 8  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  G  e.  ( S  GrpHom  T ) )  /\  ( x  e.  ( Base `  S )  /\  ( F `  x )  =  ( G `  x ) ) )  ->  ( ( invg `  T ) `
 ( F `  x ) )  =  ( ( invg `  T ) `  ( G `  x )
) )
15 eqid 2622 . . . . . . . . . 10  |-  ( invg `  T )  =  ( invg `  T )
169, 10, 15ghminv 17667 . . . . . . . . 9  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  x  e.  ( Base `  S
) )  ->  ( F `  ( ( invg `  S ) `
 x ) )  =  ( ( invg `  T ) `
 ( F `  x ) ) )
1716ad2ant2r 783 . . . . . . . 8  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  G  e.  ( S  GrpHom  T ) )  /\  ( x  e.  ( Base `  S )  /\  ( F `  x )  =  ( G `  x ) ) )  ->  ( F `  ( ( invg `  S ) `  x
) )  =  ( ( invg `  T ) `  ( F `  x )
) )
189, 10, 15ghminv 17667 . . . . . . . . 9  |-  ( ( G  e.  ( S 
GrpHom  T )  /\  x  e.  ( Base `  S
) )  ->  ( G `  ( ( invg `  S ) `
 x ) )  =  ( ( invg `  T ) `
 ( G `  x ) ) )
1918ad2ant2lr 784 . . . . . . . 8  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  G  e.  ( S  GrpHom  T ) )  /\  ( x  e.  ( Base `  S )  /\  ( F `  x )  =  ( G `  x ) ) )  ->  ( G `  ( ( invg `  S ) `  x
) )  =  ( ( invg `  T ) `  ( G `  x )
) )
2014, 17, 193eqtr4d 2666 . . . . . . 7  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  G  e.  ( S  GrpHom  T ) )  /\  ( x  e.  ( Base `  S )  /\  ( F `  x )  =  ( G `  x ) ) )  ->  ( F `  ( ( invg `  S ) `  x
) )  =  ( G `  ( ( invg `  S
) `  x )
) )
21 fveq2 6191 . . . . . . . . 9  |-  ( y  =  ( ( invg `  S ) `
 x )  -> 
( F `  y
)  =  ( F `
 ( ( invg `  S ) `
 x ) ) )
22 fveq2 6191 . . . . . . . . 9  |-  ( y  =  ( ( invg `  S ) `
 x )  -> 
( G `  y
)  =  ( G `
 ( ( invg `  S ) `
 x ) ) )
2321, 22eqeq12d 2637 . . . . . . . 8  |-  ( y  =  ( ( invg `  S ) `
 x )  -> 
( ( F `  y )  =  ( G `  y )  <-> 
( F `  (
( invg `  S ) `  x
) )  =  ( G `  ( ( invg `  S
) `  x )
) ) )
2423elrab 3363 . . . . . . 7  |-  ( ( ( invg `  S ) `  x
)  e.  { y  e.  ( Base `  S
)  |  ( F `
 y )  =  ( G `  y
) }  <->  ( (
( invg `  S ) `  x
)  e.  ( Base `  S )  /\  ( F `  ( ( invg `  S ) `
 x ) )  =  ( G `  ( ( invg `  S ) `  x
) ) ) )
2512, 20, 24sylanbrc 698 . . . . . 6  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  G  e.  ( S  GrpHom  T ) )  /\  ( x  e.  ( Base `  S )  /\  ( F `  x )  =  ( G `  x ) ) )  ->  ( ( invg `  S ) `
 x )  e. 
{ y  e.  (
Base `  S )  |  ( F `  y )  =  ( G `  y ) } )
2625expr 643 . . . . 5  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  G  e.  ( S  GrpHom  T ) )  /\  x  e.  ( Base `  S ) )  -> 
( ( F `  x )  =  ( G `  x )  ->  ( ( invg `  S ) `
 x )  e. 
{ y  e.  (
Base `  S )  |  ( F `  y )  =  ( G `  y ) } ) )
2726ralrimiva 2966 . . . 4  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  G  e.  ( S  GrpHom  T ) )  ->  A. x  e.  ( Base `  S
) ( ( F `
 x )  =  ( G `  x
)  ->  ( ( invg `  S ) `
 x )  e. 
{ y  e.  (
Base `  S )  |  ( F `  y )  =  ( G `  y ) } ) )
28 fveq2 6191 . . . . . 6  |-  ( y  =  x  ->  ( F `  y )  =  ( F `  x ) )
29 fveq2 6191 . . . . . 6  |-  ( y  =  x  ->  ( G `  y )  =  ( G `  x ) )
3028, 29eqeq12d 2637 . . . . 5  |-  ( y  =  x  ->  (
( F `  y
)  =  ( G `
 y )  <->  ( F `  x )  =  ( G `  x ) ) )
3130ralrab 3368 . . . 4  |-  ( A. x  e.  { y  e.  ( Base `  S
)  |  ( F `
 y )  =  ( G `  y
) }  ( ( invg `  S
) `  x )  e.  { y  e.  (
Base `  S )  |  ( F `  y )  =  ( G `  y ) }  <->  A. x  e.  (
Base `  S )
( ( F `  x )  =  ( G `  x )  ->  ( ( invg `  S ) `
 x )  e. 
{ y  e.  (
Base `  S )  |  ( F `  y )  =  ( G `  y ) } ) )
3227, 31sylibr 224 . . 3  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  G  e.  ( S  GrpHom  T ) )  ->  A. x  e.  { y  e.  (
Base `  S )  |  ( F `  y )  =  ( G `  y ) }  ( ( invg `  S ) `
 x )  e. 
{ y  e.  (
Base `  S )  |  ( F `  y )  =  ( G `  y ) } )
33 eqid 2622 . . . . . . . 8  |-  ( Base `  T )  =  (
Base `  T )
349, 33ghmf 17664 . . . . . . 7  |-  ( F  e.  ( S  GrpHom  T )  ->  F :
( Base `  S ) --> ( Base `  T )
)
3534adantr 481 . . . . . 6  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  G  e.  ( S  GrpHom  T ) )  ->  F :
( Base `  S ) --> ( Base `  T )
)
36 ffn 6045 . . . . . 6  |-  ( F : ( Base `  S
) --> ( Base `  T
)  ->  F  Fn  ( Base `  S )
)
3735, 36syl 17 . . . . 5  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  G  e.  ( S  GrpHom  T ) )  ->  F  Fn  ( Base `  S )
)
389, 33ghmf 17664 . . . . . . 7  |-  ( G  e.  ( S  GrpHom  T )  ->  G :
( Base `  S ) --> ( Base `  T )
)
3938adantl 482 . . . . . 6  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  G  e.  ( S  GrpHom  T ) )  ->  G :
( Base `  S ) --> ( Base `  T )
)
40 ffn 6045 . . . . . 6  |-  ( G : ( Base `  S
) --> ( Base `  T
)  ->  G  Fn  ( Base `  S )
)
4139, 40syl 17 . . . . 5  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  G  e.  ( S  GrpHom  T ) )  ->  G  Fn  ( Base `  S )
)
42 fndmin 6324 . . . . 5  |-  ( ( F  Fn  ( Base `  S )  /\  G  Fn  ( Base `  S
) )  ->  dom  ( F  i^i  G )  =  { y  e.  ( Base `  S
)  |  ( F `
 y )  =  ( G `  y
) } )
4337, 41, 42syl2anc 693 . . . 4  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  G  e.  ( S  GrpHom  T ) )  ->  dom  ( F  i^i  G )  =  { y  e.  (
Base `  S )  |  ( F `  y )  =  ( G `  y ) } )
44 eleq2 2690 . . . . 5  |-  ( dom  ( F  i^i  G
)  =  { y  e.  ( Base `  S
)  |  ( F `
 y )  =  ( G `  y
) }  ->  (
( ( invg `  S ) `  x
)  e.  dom  ( F  i^i  G )  <->  ( ( invg `  S ) `
 x )  e. 
{ y  e.  (
Base `  S )  |  ( F `  y )  =  ( G `  y ) } ) )
4544raleqbi1dv 3146 . . . 4  |-  ( dom  ( F  i^i  G
)  =  { y  e.  ( Base `  S
)  |  ( F `
 y )  =  ( G `  y
) }  ->  ( A. x  e.  dom  ( F  i^i  G ) ( ( invg `  S ) `  x
)  e.  dom  ( F  i^i  G )  <->  A. x  e.  { y  e.  (
Base `  S )  |  ( F `  y )  =  ( G `  y ) }  ( ( invg `  S ) `
 x )  e. 
{ y  e.  (
Base `  S )  |  ( F `  y )  =  ( G `  y ) } ) )
4643, 45syl 17 . . 3  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  G  e.  ( S  GrpHom  T ) )  ->  ( A. x  e.  dom  ( F  i^i  G ) ( ( invg `  S ) `  x
)  e.  dom  ( F  i^i  G )  <->  A. x  e.  { y  e.  (
Base `  S )  |  ( F `  y )  =  ( G `  y ) }  ( ( invg `  S ) `
 x )  e. 
{ y  e.  (
Base `  S )  |  ( F `  y )  =  ( G `  y ) } ) )
4732, 46mpbird 247 . 2  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  G  e.  ( S  GrpHom  T ) )  ->  A. x  e.  dom  ( F  i^i  G ) ( ( invg `  S ) `
 x )  e. 
dom  ( F  i^i  G ) )
4810issubg3 17612 . . 3  |-  ( S  e.  Grp  ->  ( dom  ( F  i^i  G
)  e.  (SubGrp `  S )  <->  ( dom  ( F  i^i  G )  e.  (SubMnd `  S
)  /\  A. x  e.  dom  ( F  i^i  G ) ( ( invg `  S ) `
 x )  e. 
dom  ( F  i^i  G ) ) ) )
496, 48syl 17 . 2  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  G  e.  ( S  GrpHom  T ) )  ->  ( dom  ( F  i^i  G )  e.  (SubGrp `  S
)  <->  ( dom  ( F  i^i  G )  e.  (SubMnd `  S )  /\  A. x  e.  dom  ( F  i^i  G ) ( ( invg `  S ) `  x
)  e.  dom  ( F  i^i  G ) ) ) )
504, 47, 49mpbir2and 957 1  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  G  e.  ( S  GrpHom  T ) )  ->  dom  ( F  i^i  G )  e.  (SubGrp `  S )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   {crab 2916    i^i cin 3573   dom cdm 5114    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650   Basecbs 15857   MndHom cmhm 17333  SubMndcsubmnd 17334   Grpcgrp 17422   invgcminusg 17423  SubGrpcsubg 17588    GrpHom cghm 17657
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-submnd 17336  df-grp 17425  df-minusg 17426  df-subg 17591  df-ghm 17658
This theorem is referenced by:  rhmeql  18810  lmhmeql  19055
  Copyright terms: Public domain W3C validator