| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hauseqlcld | Structured version Visualization version Unicode version | ||
| Description: In a Hausdorff topology, the equalizer of two continuous functions is closed (thus, two continuous functions which agree on a dense set agree everywhere). (Contributed by Stefan O'Rear, 25-Jan-2015.) (Revised by Mario Carneiro, 22-Aug-2015.) |
| Ref | Expression |
|---|---|
| hauseqlcld.k |
|
| hauseqlcld.f |
|
| hauseqlcld.g |
|
| Ref | Expression |
|---|---|
| hauseqlcld |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hauseqlcld.f |
. . . . . . . . . 10
| |
| 2 | eqid 2622 |
. . . . . . . . . . 11
| |
| 3 | eqid 2622 |
. . . . . . . . . . 11
| |
| 4 | 2, 3 | cnf 21050 |
. . . . . . . . . 10
|
| 5 | 1, 4 | syl 17 |
. . . . . . . . 9
|
| 6 | 5 | ffvelrnda 6359 |
. . . . . . . 8
|
| 7 | 6 | biantrud 528 |
. . . . . . 7
|
| 8 | fvex 6201 |
. . . . . . . . 9
| |
| 9 | 8 | ideq 5274 |
. . . . . . . 8
|
| 10 | df-br 4654 |
. . . . . . . 8
| |
| 11 | 9, 10 | bitr3i 266 |
. . . . . . 7
|
| 12 | 8 | opelres 5401 |
. . . . . . 7
|
| 13 | 7, 11, 12 | 3bitr4g 303 |
. . . . . 6
|
| 14 | fveq2 6191 |
. . . . . . . . . 10
| |
| 15 | fveq2 6191 |
. . . . . . . . . 10
| |
| 16 | 14, 15 | opeq12d 4410 |
. . . . . . . . 9
|
| 17 | eqid 2622 |
. . . . . . . . 9
| |
| 18 | opex 4932 |
. . . . . . . . 9
| |
| 19 | 16, 17, 18 | fvmpt 6282 |
. . . . . . . 8
|
| 20 | 19 | adantl 482 |
. . . . . . 7
|
| 21 | 20 | eleq1d 2686 |
. . . . . 6
|
| 22 | 13, 21 | bitr4d 271 |
. . . . 5
|
| 23 | 22 | pm5.32da 673 |
. . . 4
|
| 24 | ffn 6045 |
. . . . . . . 8
| |
| 25 | 5, 24 | syl 17 |
. . . . . . 7
|
| 26 | hauseqlcld.g |
. . . . . . . . 9
| |
| 27 | 2, 3 | cnf 21050 |
. . . . . . . . 9
|
| 28 | 26, 27 | syl 17 |
. . . . . . . 8
|
| 29 | ffn 6045 |
. . . . . . . 8
| |
| 30 | 28, 29 | syl 17 |
. . . . . . 7
|
| 31 | fndmin 6324 |
. . . . . . 7
| |
| 32 | 25, 30, 31 | syl2anc 693 |
. . . . . 6
|
| 33 | 32 | eleq2d 2687 |
. . . . 5
|
| 34 | rabid 3116 |
. . . . 5
| |
| 35 | 33, 34 | syl6bb 276 |
. . . 4
|
| 36 | opex 4932 |
. . . . . 6
| |
| 37 | 36, 17 | fnmpti 6022 |
. . . . 5
|
| 38 | elpreima 6337 |
. . . . 5
| |
| 39 | 37, 38 | mp1i 13 |
. . . 4
|
| 40 | 23, 35, 39 | 3bitr4d 300 |
. . 3
|
| 41 | 40 | eqrdv 2620 |
. 2
|
| 42 | 2, 17 | txcnmpt 21427 |
. . . 4
|
| 43 | 1, 26, 42 | syl2anc 693 |
. . 3
|
| 44 | hauseqlcld.k |
. . . 4
| |
| 45 | 3 | hausdiag 21448 |
. . . . 5
|
| 46 | 45 | simprbi 480 |
. . . 4
|
| 47 | 44, 46 | syl 17 |
. . 3
|
| 48 | cnclima 21072 |
. . 3
| |
| 49 | 43, 47, 48 | syl2anc 693 |
. 2
|
| 50 | 41, 49 | eqeltrd 2701 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 df-map 7859 df-topgen 16104 df-top 20699 df-topon 20716 df-bases 20750 df-cld 20823 df-cn 21031 df-haus 21119 df-tx 21365 |
| This theorem is referenced by: hauseqcn 29941 hausgraph 37790 |
| Copyright terms: Public domain | W3C validator |