MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnoe Structured version   Visualization version   Unicode version

Theorem fnoe 7590
Description: Functionality and domain of ordinal exponentiation. (Contributed by Mario Carneiro, 29-May-2015.)
Assertion
Ref Expression
fnoe  |-  ^o  Fn  ( On  X.  On )

Proof of Theorem fnoe
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-oexp 7566 . 2  |-  ^o  =  ( x  e.  On ,  y  e.  On  |->  if ( x  =  (/) ,  ( 1o  \  y
) ,  ( rec ( ( z  e. 
_V  |->  ( z  .o  x ) ) ,  1o ) `  y
) ) )
2 1on 7567 . . . 4  |-  1o  e.  On
3 difexg 4808 . . . 4  |-  ( 1o  e.  On  ->  ( 1o  \  y )  e. 
_V )
42, 3ax-mp 5 . . 3  |-  ( 1o 
\  y )  e. 
_V
5 fvex 6201 . . 3  |-  ( rec ( ( z  e. 
_V  |->  ( z  .o  x ) ) ,  1o ) `  y
)  e.  _V
64, 5ifex 4156 . 2  |-  if ( x  =  (/) ,  ( 1o  \  y ) ,  ( rec (
( z  e.  _V  |->  ( z  .o  x
) ) ,  1o ) `  y )
)  e.  _V
71, 6fnmpt2i 7239 1  |-  ^o  Fn  ( On  X.  On )
Colors of variables: wff setvar class
Syntax hints:    = wceq 1483    e. wcel 1990   _Vcvv 3200    \ cdif 3571   (/)c0 3915   ifcif 4086    |-> cmpt 4729    X. cxp 5112   Oncon0 5723    Fn wfn 5883   ` cfv 5888  (class class class)co 6650   reccrdg 7505   1oc1o 7553    .o comu 7558    ^o coe 7559
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-1o 7560  df-oexp 7566
This theorem is referenced by:  oaabs2  7725  omabs  7727
  Copyright terms: Public domain W3C validator