Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapprop Structured version   Visualization version   Unicode version

Theorem mapprop 42124
Description: An unordered pair containing two ordered pairs as an element of the mapping operation. (Contributed by AV, 16-Apr-2019.)
Hypothesis
Ref Expression
mapprop.f  |-  F  =  { <. X ,  A >. ,  <. Y ,  B >. }
Assertion
Ref Expression
mapprop  |-  ( ( ( X  e.  V  /\  A  e.  R
)  /\  ( Y  e.  V  /\  B  e.  R )  /\  ( X  =/=  Y  /\  R  e.  W ) )  ->  F  e.  ( R  ^m  { X ,  Y } ) )

Proof of Theorem mapprop
StepHypRef Expression
1 simpl 473 . . . . . . 7  |-  ( ( X  e.  V  /\  A  e.  R )  ->  X  e.  V )
2 simpl 473 . . . . . . 7  |-  ( ( Y  e.  V  /\  B  e.  R )  ->  Y  e.  V )
31, 2anim12i 590 . . . . . 6  |-  ( ( ( X  e.  V  /\  A  e.  R
)  /\  ( Y  e.  V  /\  B  e.  R ) )  -> 
( X  e.  V  /\  Y  e.  V
) )
433adant3 1081 . . . . 5  |-  ( ( ( X  e.  V  /\  A  e.  R
)  /\  ( Y  e.  V  /\  B  e.  R )  /\  ( X  =/=  Y  /\  R  e.  W ) )  -> 
( X  e.  V  /\  Y  e.  V
) )
5 simpr 477 . . . . . . 7  |-  ( ( X  e.  V  /\  A  e.  R )  ->  A  e.  R )
6 simpr 477 . . . . . . 7  |-  ( ( Y  e.  V  /\  B  e.  R )  ->  B  e.  R )
75, 6anim12i 590 . . . . . 6  |-  ( ( ( X  e.  V  /\  A  e.  R
)  /\  ( Y  e.  V  /\  B  e.  R ) )  -> 
( A  e.  R  /\  B  e.  R
) )
873adant3 1081 . . . . 5  |-  ( ( ( X  e.  V  /\  A  e.  R
)  /\  ( Y  e.  V  /\  B  e.  R )  /\  ( X  =/=  Y  /\  R  e.  W ) )  -> 
( A  e.  R  /\  B  e.  R
) )
9 simpl 473 . . . . . 6  |-  ( ( X  =/=  Y  /\  R  e.  W )  ->  X  =/=  Y )
1093ad2ant3 1084 . . . . 5  |-  ( ( ( X  e.  V  /\  A  e.  R
)  /\  ( Y  e.  V  /\  B  e.  R )  /\  ( X  =/=  Y  /\  R  e.  W ) )  ->  X  =/=  Y )
11 fprg 6422 . . . . 5  |-  ( ( ( X  e.  V  /\  Y  e.  V
)  /\  ( A  e.  R  /\  B  e.  R )  /\  X  =/=  Y )  ->  { <. X ,  A >. ,  <. Y ,  B >. } : { X ,  Y } --> { A ,  B }
)
124, 8, 10, 11syl3anc 1326 . . . 4  |-  ( ( ( X  e.  V  /\  A  e.  R
)  /\  ( Y  e.  V  /\  B  e.  R )  /\  ( X  =/=  Y  /\  R  e.  W ) )  ->  { <. X ,  A >. ,  <. Y ,  B >. } : { X ,  Y } --> { A ,  B } )
13 mapprop.f . . . . 5  |-  F  =  { <. X ,  A >. ,  <. Y ,  B >. }
1413feq1i 6036 . . . 4  |-  ( F : { X ,  Y } --> { A ,  B }  <->  { <. X ,  A >. ,  <. Y ,  B >. } : { X ,  Y } --> { A ,  B } )
1512, 14sylibr 224 . . 3  |-  ( ( ( X  e.  V  /\  A  e.  R
)  /\  ( Y  e.  V  /\  B  e.  R )  /\  ( X  =/=  Y  /\  R  e.  W ) )  ->  F : { X ,  Y } --> { A ,  B } )
16 prssi 4353 . . . . 5  |-  ( ( A  e.  R  /\  B  e.  R )  ->  { A ,  B }  C_  R )
177, 16syl 17 . . . 4  |-  ( ( ( X  e.  V  /\  A  e.  R
)  /\  ( Y  e.  V  /\  B  e.  R ) )  ->  { A ,  B }  C_  R )
18173adant3 1081 . . 3  |-  ( ( ( X  e.  V  /\  A  e.  R
)  /\  ( Y  e.  V  /\  B  e.  R )  /\  ( X  =/=  Y  /\  R  e.  W ) )  ->  { A ,  B }  C_  R )
1915, 18fssd 6057 . 2  |-  ( ( ( X  e.  V  /\  A  e.  R
)  /\  ( Y  e.  V  /\  B  e.  R )  /\  ( X  =/=  Y  /\  R  e.  W ) )  ->  F : { X ,  Y } --> R )
20 simpr 477 . . . 4  |-  ( ( X  =/=  Y  /\  R  e.  W )  ->  R  e.  W )
21203ad2ant3 1084 . . 3  |-  ( ( ( X  e.  V  /\  A  e.  R
)  /\  ( Y  e.  V  /\  B  e.  R )  /\  ( X  =/=  Y  /\  R  e.  W ) )  ->  R  e.  W )
22 prex 4909 . . 3  |-  { X ,  Y }  e.  _V
23 elmapg 7870 . . 3  |-  ( ( R  e.  W  /\  { X ,  Y }  e.  _V )  ->  ( F  e.  ( R  ^m  { X ,  Y } )  <->  F : { X ,  Y } --> R ) )
2421, 22, 23sylancl 694 . 2  |-  ( ( ( X  e.  V  /\  A  e.  R
)  /\  ( Y  e.  V  /\  B  e.  R )  /\  ( X  =/=  Y  /\  R  e.  W ) )  -> 
( F  e.  ( R  ^m  { X ,  Y } )  <->  F : { X ,  Y } --> R ) )
2519, 24mpbird 247 1  |-  ( ( ( X  e.  V  /\  A  e.  R
)  /\  ( Y  e.  V  /\  B  e.  R )  /\  ( X  =/=  Y  /\  R  e.  W ) )  ->  F  e.  ( R  ^m  { X ,  Y } ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   _Vcvv 3200    C_ wss 3574   {cpr 4179   <.cop 4183   -->wf 5884  (class class class)co 6650    ^m cmap 7857
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-map 7859
This theorem is referenced by:  lincvalpr  42207  ldepspr  42262
  Copyright terms: Public domain W3C validator