MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gcdval Structured version   Visualization version   Unicode version

Theorem gcdval 15218
Description: The value of the  gcd operator.  ( M  gcd  N ) is the greatest common divisor of  M and  N. If  M and  N are both  0, the result is defined conventionally as  0. (Contributed by Paul Chapman, 21-Mar-2011.) (Revised by Mario Carneiro, 10-Nov-2013.)
Assertion
Ref Expression
gcdval  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  gcd  N
)  =  if ( ( M  =  0  /\  N  =  0 ) ,  0 ,  sup ( { n  e.  ZZ  |  ( n 
||  M  /\  n  ||  N ) } ,  RR ,  <  ) ) )
Distinct variable groups:    n, M    n, N

Proof of Theorem gcdval
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq1 2626 . . . 4  |-  ( x  =  M  ->  (
x  =  0  <->  M  =  0 ) )
21anbi1d 741 . . 3  |-  ( x  =  M  ->  (
( x  =  0  /\  y  =  0 )  <->  ( M  =  0  /\  y  =  0 ) ) )
3 breq2 4657 . . . . . 6  |-  ( x  =  M  ->  (
n  ||  x  <->  n  ||  M
) )
43anbi1d 741 . . . . 5  |-  ( x  =  M  ->  (
( n  ||  x  /\  n  ||  y )  <-> 
( n  ||  M  /\  n  ||  y ) ) )
54rabbidv 3189 . . . 4  |-  ( x  =  M  ->  { n  e.  ZZ  |  ( n 
||  x  /\  n  ||  y ) }  =  { n  e.  ZZ  |  ( n  ||  M  /\  n  ||  y
) } )
65supeq1d 8352 . . 3  |-  ( x  =  M  ->  sup ( { n  e.  ZZ  |  ( n  ||  x  /\  n  ||  y
) } ,  RR ,  <  )  =  sup ( { n  e.  ZZ  |  ( n  ||  M  /\  n  ||  y
) } ,  RR ,  <  ) )
72, 6ifbieq2d 4111 . 2  |-  ( x  =  M  ->  if ( ( x  =  0  /\  y  =  0 ) ,  0 ,  sup ( { n  e.  ZZ  | 
( n  ||  x  /\  n  ||  y ) } ,  RR ,  <  ) )  =  if ( ( M  =  0  /\  y  =  0 ) ,  0 ,  sup ( { n  e.  ZZ  | 
( n  ||  M  /\  n  ||  y ) } ,  RR ,  <  ) ) )
8 eqeq1 2626 . . . 4  |-  ( y  =  N  ->  (
y  =  0  <->  N  =  0 ) )
98anbi2d 740 . . 3  |-  ( y  =  N  ->  (
( M  =  0  /\  y  =  0 )  <->  ( M  =  0  /\  N  =  0 ) ) )
10 breq2 4657 . . . . . 6  |-  ( y  =  N  ->  (
n  ||  y  <->  n  ||  N
) )
1110anbi2d 740 . . . . 5  |-  ( y  =  N  ->  (
( n  ||  M  /\  n  ||  y )  <-> 
( n  ||  M  /\  n  ||  N ) ) )
1211rabbidv 3189 . . . 4  |-  ( y  =  N  ->  { n  e.  ZZ  |  ( n 
||  M  /\  n  ||  y ) }  =  { n  e.  ZZ  |  ( n  ||  M  /\  n  ||  N
) } )
1312supeq1d 8352 . . 3  |-  ( y  =  N  ->  sup ( { n  e.  ZZ  |  ( n  ||  M  /\  n  ||  y
) } ,  RR ,  <  )  =  sup ( { n  e.  ZZ  |  ( n  ||  M  /\  n  ||  N
) } ,  RR ,  <  ) )
149, 13ifbieq2d 4111 . 2  |-  ( y  =  N  ->  if ( ( M  =  0  /\  y  =  0 ) ,  0 ,  sup ( { n  e.  ZZ  | 
( n  ||  M  /\  n  ||  y ) } ,  RR ,  <  ) )  =  if ( ( M  =  0  /\  N  =  0 ) ,  0 ,  sup ( { n  e.  ZZ  | 
( n  ||  M  /\  n  ||  N ) } ,  RR ,  <  ) ) )
15 df-gcd 15217 . 2  |-  gcd  =  ( x  e.  ZZ ,  y  e.  ZZ  |->  if ( ( x  =  0  /\  y  =  0 ) ,  0 ,  sup ( { n  e.  ZZ  | 
( n  ||  x  /\  n  ||  y ) } ,  RR ,  <  ) ) )
16 c0ex 10034 . . 3  |-  0  e.  _V
17 ltso 10118 . . . 4  |-  <  Or  RR
1817supex 8369 . . 3  |-  sup ( { n  e.  ZZ  |  ( n  ||  M  /\  n  ||  N
) } ,  RR ,  <  )  e.  _V
1916, 18ifex 4156 . 2  |-  if ( ( M  =  0  /\  N  =  0 ) ,  0 ,  sup ( { n  e.  ZZ  |  ( n 
||  M  /\  n  ||  N ) } ,  RR ,  <  ) )  e.  _V
207, 14, 15, 19ovmpt2 6796 1  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  gcd  N
)  =  if ( ( M  =  0  /\  N  =  0 ) ,  0 ,  sup ( { n  e.  ZZ  |  ( n 
||  M  /\  n  ||  N ) } ,  RR ,  <  ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   {crab 2916   ifcif 4086   class class class wbr 4653  (class class class)co 6650   supcsup 8346   RRcr 9935   0cc0 9936    < clt 10074   ZZcz 11377    || cdvds 14983    gcd cgcd 15216
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-mulcl 9998  ax-i2m1 10004  ax-pre-lttri 10010  ax-pre-lttrn 10011
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-pnf 10076  df-mnf 10077  df-ltxr 10079  df-gcd 15217
This theorem is referenced by:  gcd0val  15219  gcdn0val  15220  gcdf  15234  gcdcom  15235  dfgcd2  15263  gcdass  15264
  Copyright terms: Public domain W3C validator