MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfgcd2 Structured version   Visualization version   Unicode version

Theorem dfgcd2 15263
Description: Alternate definition of the  gcd operator, see definition in [ApostolNT] p. 15. (Contributed by AV, 8-Aug-2021.)
Assertion
Ref Expression
dfgcd2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( D  =  ( M  gcd  N )  <-> 
( 0  <_  D  /\  ( D  ||  M  /\  D  ||  N )  /\  A. e  e.  ZZ  ( ( e 
||  M  /\  e  ||  N )  ->  e  ||  D ) ) ) )
Distinct variable groups:    D, e    e, M    e, N

Proof of Theorem dfgcd2
Dummy variables  n  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gcdcl 15228 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  gcd  N
)  e.  NN0 )
21nn0ge0d 11354 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  0  <_  ( M  gcd  N ) )
3 gcddvds 15225 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M  gcd  N )  ||  M  /\  ( M  gcd  N ) 
||  N ) )
4 3anass 1042 . . . . . . . 8  |-  ( ( e  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  <->  ( e  e.  ZZ  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) ) )
5 ancom 466 . . . . . . . 8  |-  ( ( e  e.  ZZ  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  <->  ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  e  e.  ZZ ) )
64, 5bitri 264 . . . . . . 7  |-  ( ( e  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  <->  ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  e  e.  ZZ ) )
7 dvdsgcd 15261 . . . . . . 7  |-  ( ( e  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( e  ||  M  /\  e  ||  N )  ->  e  ||  ( M  gcd  N ) ) )
86, 7sylbir 225 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  e  e.  ZZ )  ->  ( ( e 
||  M  /\  e  ||  N )  ->  e  ||  ( M  gcd  N
) ) )
98ralrimiva 2966 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  A. e  e.  ZZ  ( ( e  ||  M  /\  e  ||  N
)  ->  e  ||  ( M  gcd  N ) ) )
102, 3, 93jca 1242 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( 0  <_  ( M  gcd  N )  /\  ( ( M  gcd  N )  ||  M  /\  ( M  gcd  N ) 
||  N )  /\  A. e  e.  ZZ  (
( e  ||  M  /\  e  ||  N )  ->  e  ||  ( M  gcd  N ) ) ) )
1110adantr 481 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  D  =  ( M  gcd  N ) )  ->  ( 0  <_  ( M  gcd  N )  /\  ( ( M  gcd  N ) 
||  M  /\  ( M  gcd  N )  ||  N )  /\  A. e  e.  ZZ  (
( e  ||  M  /\  e  ||  N )  ->  e  ||  ( M  gcd  N ) ) ) )
12 breq2 4657 . . . . 5  |-  ( D  =  ( M  gcd  N )  ->  ( 0  <_  D  <->  0  <_  ( M  gcd  N ) ) )
13 breq1 4656 . . . . . 6  |-  ( D  =  ( M  gcd  N )  ->  ( D  ||  M  <->  ( M  gcd  N )  ||  M ) )
14 breq1 4656 . . . . . 6  |-  ( D  =  ( M  gcd  N )  ->  ( D  ||  N  <->  ( M  gcd  N )  ||  N ) )
1513, 14anbi12d 747 . . . . 5  |-  ( D  =  ( M  gcd  N )  ->  ( ( D  ||  M  /\  D  ||  N )  <->  ( ( M  gcd  N )  ||  M  /\  ( M  gcd  N )  ||  N ) ) )
16 breq2 4657 . . . . . . 7  |-  ( D  =  ( M  gcd  N )  ->  ( e  ||  D  <->  e  ||  ( M  gcd  N ) ) )
1716imbi2d 330 . . . . . 6  |-  ( D  =  ( M  gcd  N )  ->  ( (
( e  ||  M  /\  e  ||  N )  ->  e  ||  D
)  <->  ( ( e 
||  M  /\  e  ||  N )  ->  e  ||  ( M  gcd  N
) ) ) )
1817ralbidv 2986 . . . . 5  |-  ( D  =  ( M  gcd  N )  ->  ( A. e  e.  ZZ  (
( e  ||  M  /\  e  ||  N )  ->  e  ||  D
)  <->  A. e  e.  ZZ  ( ( e  ||  M  /\  e  ||  N
)  ->  e  ||  ( M  gcd  N ) ) ) )
1912, 15, 183anbi123d 1399 . . . 4  |-  ( D  =  ( M  gcd  N )  ->  ( (
0  <_  D  /\  ( D  ||  M  /\  D  ||  N )  /\  A. e  e.  ZZ  (
( e  ||  M  /\  e  ||  N )  ->  e  ||  D
) )  <->  ( 0  <_  ( M  gcd  N )  /\  ( ( M  gcd  N ) 
||  M  /\  ( M  gcd  N )  ||  N )  /\  A. e  e.  ZZ  (
( e  ||  M  /\  e  ||  N )  ->  e  ||  ( M  gcd  N ) ) ) ) )
2019adantl 482 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  D  =  ( M  gcd  N ) )  ->  ( (
0  <_  D  /\  ( D  ||  M  /\  D  ||  N )  /\  A. e  e.  ZZ  (
( e  ||  M  /\  e  ||  N )  ->  e  ||  D
) )  <->  ( 0  <_  ( M  gcd  N )  /\  ( ( M  gcd  N ) 
||  M  /\  ( M  gcd  N )  ||  N )  /\  A. e  e.  ZZ  (
( e  ||  M  /\  e  ||  N )  ->  e  ||  ( M  gcd  N ) ) ) ) )
2111, 20mpbird 247 . 2  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  D  =  ( M  gcd  N ) )  ->  ( 0  <_  D  /\  ( D  ||  M  /\  D  ||  N )  /\  A. e  e.  ZZ  (
( e  ||  M  /\  e  ||  N )  ->  e  ||  D
) ) )
22 gcdval 15218 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  gcd  N
)  =  if ( ( M  =  0  /\  N  =  0 ) ,  0 ,  sup ( { n  e.  ZZ  |  ( n 
||  M  /\  n  ||  N ) } ,  RR ,  <  ) ) )
2322adantr 481 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( 0  <_  D  /\  ( D  ||  M  /\  D  ||  N
)  /\  A. e  e.  ZZ  ( ( e 
||  M  /\  e  ||  N )  ->  e  ||  D ) ) )  ->  ( M  gcd  N )  =  if ( ( M  =  0  /\  N  =  0 ) ,  0 ,  sup ( { n  e.  ZZ  |  ( n 
||  M  /\  n  ||  N ) } ,  RR ,  <  ) ) )
24 iftrue 4092 . . . . . 6  |-  ( ( M  =  0  /\  N  =  0 )  ->  if ( ( M  =  0  /\  N  =  0 ) ,  0 ,  sup ( { n  e.  ZZ  |  ( n  ||  M  /\  n  ||  N
) } ,  RR ,  <  ) )  =  0 )
2524adantr 481 . . . . 5  |-  ( ( ( M  =  0  /\  N  =  0 )  /\  ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( 0  <_  D  /\  ( D  ||  M  /\  D  ||  N )  /\  A. e  e.  ZZ  ( ( e 
||  M  /\  e  ||  N )  ->  e  ||  D ) ) ) )  ->  if (
( M  =  0  /\  N  =  0 ) ,  0 ,  sup ( { n  e.  ZZ  |  ( n 
||  M  /\  n  ||  N ) } ,  RR ,  <  ) )  =  0 )
26 breq2 4657 . . . . . . . . . 10  |-  ( M  =  0  ->  ( D  ||  M  <->  D  ||  0
) )
27 breq2 4657 . . . . . . . . . 10  |-  ( N  =  0  ->  ( D  ||  N  <->  D  ||  0
) )
2826, 27bi2anan9 917 . . . . . . . . 9  |-  ( ( M  =  0  /\  N  =  0 )  ->  ( ( D 
||  M  /\  D  ||  N )  <->  ( D  ||  0  /\  D  ||  0 ) ) )
29 breq2 4657 . . . . . . . . . . . 12  |-  ( M  =  0  ->  (
e  ||  M  <->  e  ||  0 ) )
30 breq2 4657 . . . . . . . . . . . 12  |-  ( N  =  0  ->  (
e  ||  N  <->  e  ||  0 ) )
3129, 30bi2anan9 917 . . . . . . . . . . 11  |-  ( ( M  =  0  /\  N  =  0 )  ->  ( ( e 
||  M  /\  e  ||  N )  <->  ( e  ||  0  /\  e  ||  0 ) ) )
3231imbi1d 331 . . . . . . . . . 10  |-  ( ( M  =  0  /\  N  =  0 )  ->  ( ( ( e  ||  M  /\  e  ||  N )  -> 
e  ||  D )  <->  ( ( e  ||  0  /\  e  ||  0 )  ->  e  ||  D
) ) )
3332ralbidv 2986 . . . . . . . . 9  |-  ( ( M  =  0  /\  N  =  0 )  ->  ( A. e  e.  ZZ  ( ( e 
||  M  /\  e  ||  N )  ->  e  ||  D )  <->  A. e  e.  ZZ  ( ( e 
||  0  /\  e  ||  0 )  ->  e  ||  D ) ) )
3428, 333anbi23d 1402 . . . . . . . 8  |-  ( ( M  =  0  /\  N  =  0 )  ->  ( ( 0  <_  D  /\  ( D  ||  M  /\  D  ||  N )  /\  A. e  e.  ZZ  (
( e  ||  M  /\  e  ||  N )  ->  e  ||  D
) )  <->  ( 0  <_  D  /\  ( D  ||  0  /\  D  ||  0 )  /\  A. e  e.  ZZ  (
( e  ||  0  /\  e  ||  0 )  ->  e  ||  D
) ) ) )
35 dvdszrcl 14988 . . . . . . . . . . . 12  |-  ( D 
||  0  ->  ( D  e.  ZZ  /\  0  e.  ZZ ) )
36 dvds0 14997 . . . . . . . . . . . . . . . . . . 19  |-  ( e  e.  ZZ  ->  e  ||  0 )
3736, 36jca 554 . . . . . . . . . . . . . . . . . 18  |-  ( e  e.  ZZ  ->  (
e  ||  0  /\  e  ||  0 ) )
3837adantl 482 . . . . . . . . . . . . . . . . 17  |-  ( ( ( D  e.  ZZ  /\  0  <_  D )  /\  e  e.  ZZ )  ->  ( e  ||  0  /\  e  ||  0
) )
39 pm5.5 351 . . . . . . . . . . . . . . . . 17  |-  ( ( e  ||  0  /\  e  ||  0 )  ->  ( ( ( e  ||  0  /\  e  ||  0 )  ->  e  ||  D
)  <->  e  ||  D
) )
4038, 39syl 17 . . . . . . . . . . . . . . . 16  |-  ( ( ( D  e.  ZZ  /\  0  <_  D )  /\  e  e.  ZZ )  ->  ( ( ( e  ||  0  /\  e  ||  0 )  ->  e  ||  D
)  <->  e  ||  D
) )
4140ralbidva 2985 . . . . . . . . . . . . . . 15  |-  ( ( D  e.  ZZ  /\  0  <_  D )  -> 
( A. e  e.  ZZ  ( ( e 
||  0  /\  e  ||  0 )  ->  e  ||  D )  <->  A. e  e.  ZZ  e  ||  D
) )
42 0z 11388 . . . . . . . . . . . . . . . . . 18  |-  0  e.  ZZ
43 breq1 4656 . . . . . . . . . . . . . . . . . . 19  |-  ( e  =  0  ->  (
e  ||  D  <->  0  ||  D ) )
4443rspcv 3305 . . . . . . . . . . . . . . . . . 18  |-  ( 0  e.  ZZ  ->  ( A. e  e.  ZZ  e  ||  D  ->  0  ||  D ) )
4542, 44ax-mp 5 . . . . . . . . . . . . . . . . 17  |-  ( A. e  e.  ZZ  e  ||  D  ->  0  ||  D )
46 0dvds 15002 . . . . . . . . . . . . . . . . . . 19  |-  ( D  e.  ZZ  ->  (
0  ||  D  <->  D  = 
0 ) )
4746biimpd 219 . . . . . . . . . . . . . . . . . 18  |-  ( D  e.  ZZ  ->  (
0  ||  D  ->  D  =  0 ) )
48 eqcom 2629 . . . . . . . . . . . . . . . . . 18  |-  ( 0  =  D  <->  D  = 
0 )
4947, 48syl6ibr 242 . . . . . . . . . . . . . . . . 17  |-  ( D  e.  ZZ  ->  (
0  ||  D  ->  0  =  D ) )
5045, 49syl5 34 . . . . . . . . . . . . . . . 16  |-  ( D  e.  ZZ  ->  ( A. e  e.  ZZ  e  ||  D  ->  0  =  D ) )
5150adantr 481 . . . . . . . . . . . . . . 15  |-  ( ( D  e.  ZZ  /\  0  <_  D )  -> 
( A. e  e.  ZZ  e  ||  D  ->  0  =  D ) )
5241, 51sylbid 230 . . . . . . . . . . . . . 14  |-  ( ( D  e.  ZZ  /\  0  <_  D )  -> 
( A. e  e.  ZZ  ( ( e 
||  0  /\  e  ||  0 )  ->  e  ||  D )  ->  0  =  D ) )
5352ex 450 . . . . . . . . . . . . 13  |-  ( D  e.  ZZ  ->  (
0  <_  D  ->  ( A. e  e.  ZZ  ( ( e  ||  0  /\  e  ||  0
)  ->  e  ||  D )  ->  0  =  D ) ) )
5453adantr 481 . . . . . . . . . . . 12  |-  ( ( D  e.  ZZ  /\  0  e.  ZZ )  ->  ( 0  <_  D  ->  ( A. e  e.  ZZ  ( ( e 
||  0  /\  e  ||  0 )  ->  e  ||  D )  ->  0  =  D ) ) )
5535, 54syl 17 . . . . . . . . . . 11  |-  ( D 
||  0  ->  (
0  <_  D  ->  ( A. e  e.  ZZ  ( ( e  ||  0  /\  e  ||  0
)  ->  e  ||  D )  ->  0  =  D ) ) )
5655adantr 481 . . . . . . . . . 10  |-  ( ( D  ||  0  /\  D  ||  0 )  ->  ( 0  <_  D  ->  ( A. e  e.  ZZ  ( ( e 
||  0  /\  e  ||  0 )  ->  e  ||  D )  ->  0  =  D ) ) )
5756com12 32 . . . . . . . . 9  |-  ( 0  <_  D  ->  (
( D  ||  0  /\  D  ||  0 )  ->  ( A. e  e.  ZZ  ( ( e 
||  0  /\  e  ||  0 )  ->  e  ||  D )  ->  0  =  D ) ) )
58573imp 1256 . . . . . . . 8  |-  ( ( 0  <_  D  /\  ( D  ||  0  /\  D  ||  0 )  /\  A. e  e.  ZZ  ( ( e 
||  0  /\  e  ||  0 )  ->  e  ||  D ) )  -> 
0  =  D )
5934, 58syl6bi 243 . . . . . . 7  |-  ( ( M  =  0  /\  N  =  0 )  ->  ( ( 0  <_  D  /\  ( D  ||  M  /\  D  ||  N )  /\  A. e  e.  ZZ  (
( e  ||  M  /\  e  ||  N )  ->  e  ||  D
) )  ->  0  =  D ) )
6059adantld 483 . . . . . 6  |-  ( ( M  =  0  /\  N  =  0 )  ->  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( 0  <_  D  /\  ( D  ||  M  /\  D  ||  N )  /\  A. e  e.  ZZ  ( ( e 
||  M  /\  e  ||  N )  ->  e  ||  D ) ) )  ->  0  =  D ) )
6160imp 445 . . . . 5  |-  ( ( ( M  =  0  /\  N  =  0 )  /\  ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( 0  <_  D  /\  ( D  ||  M  /\  D  ||  N )  /\  A. e  e.  ZZ  ( ( e 
||  M  /\  e  ||  N )  ->  e  ||  D ) ) ) )  ->  0  =  D )
6225, 61eqtrd 2656 . . . 4  |-  ( ( ( M  =  0  /\  N  =  0 )  /\  ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( 0  <_  D  /\  ( D  ||  M  /\  D  ||  N )  /\  A. e  e.  ZZ  ( ( e 
||  M  /\  e  ||  N )  ->  e  ||  D ) ) ) )  ->  if (
( M  =  0  /\  N  =  0 ) ,  0 ,  sup ( { n  e.  ZZ  |  ( n 
||  M  /\  n  ||  N ) } ,  RR ,  <  ) )  =  D )
63 iffalse 4095 . . . . . 6  |-  ( -.  ( M  =  0  /\  N  =  0 )  ->  if (
( M  =  0  /\  N  =  0 ) ,  0 ,  sup ( { n  e.  ZZ  |  ( n 
||  M  /\  n  ||  N ) } ,  RR ,  <  ) )  =  sup ( { n  e.  ZZ  | 
( n  ||  M  /\  n  ||  N ) } ,  RR ,  <  ) )
6463adantr 481 . . . . 5  |-  ( ( -.  ( M  =  0  /\  N  =  0 )  /\  (
( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( 0  <_  D  /\  ( D  ||  M  /\  D  ||  N
)  /\  A. e  e.  ZZ  ( ( e 
||  M  /\  e  ||  N )  ->  e  ||  D ) ) ) )  ->  if (
( M  =  0  /\  N  =  0 ) ,  0 ,  sup ( { n  e.  ZZ  |  ( n 
||  M  /\  n  ||  N ) } ,  RR ,  <  ) )  =  sup ( { n  e.  ZZ  | 
( n  ||  M  /\  n  ||  N ) } ,  RR ,  <  ) )
65 ltso 10118 . . . . . . 7  |-  <  Or  RR
6665a1i 11 . . . . . 6  |-  ( ( -.  ( M  =  0  /\  N  =  0 )  /\  (
( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( 0  <_  D  /\  ( D  ||  M  /\  D  ||  N
)  /\  A. e  e.  ZZ  ( ( e 
||  M  /\  e  ||  N )  ->  e  ||  D ) ) ) )  ->  <  Or  RR )
67 dvdszrcl 14988 . . . . . . . . . . 11  |-  ( D 
||  M  ->  ( D  e.  ZZ  /\  M  e.  ZZ ) )
6867simpld 475 . . . . . . . . . 10  |-  ( D 
||  M  ->  D  e.  ZZ )
6968zred 11482 . . . . . . . . 9  |-  ( D 
||  M  ->  D  e.  RR )
7069adantr 481 . . . . . . . 8  |-  ( ( D  ||  M  /\  D  ||  N )  ->  D  e.  RR )
71703ad2ant2 1083 . . . . . . 7  |-  ( ( 0  <_  D  /\  ( D  ||  M  /\  D  ||  N )  /\  A. e  e.  ZZ  (
( e  ||  M  /\  e  ||  N )  ->  e  ||  D
) )  ->  D  e.  RR )
7271ad2antll 765 . . . . . 6  |-  ( ( -.  ( M  =  0  /\  N  =  0 )  /\  (
( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( 0  <_  D  /\  ( D  ||  M  /\  D  ||  N
)  /\  A. e  e.  ZZ  ( ( e 
||  M  /\  e  ||  N )  ->  e  ||  D ) ) ) )  ->  D  e.  RR )
73 breq1 4656 . . . . . . . . . 10  |-  ( n  =  y  ->  (
n  ||  M  <->  y  ||  M ) )
74 breq1 4656 . . . . . . . . . 10  |-  ( n  =  y  ->  (
n  ||  N  <->  y  ||  N ) )
7573, 74anbi12d 747 . . . . . . . . 9  |-  ( n  =  y  ->  (
( n  ||  M  /\  n  ||  N )  <-> 
( y  ||  M  /\  y  ||  N ) ) )
7675elrab 3363 . . . . . . . 8  |-  ( y  e.  { n  e.  ZZ  |  ( n 
||  M  /\  n  ||  N ) }  <->  ( y  e.  ZZ  /\  ( y 
||  M  /\  y  ||  N ) ) )
77 breq1 4656 . . . . . . . . . . . . . . . . . . . . 21  |-  ( e  =  y  ->  (
e  ||  M  <->  y  ||  M ) )
78 breq1 4656 . . . . . . . . . . . . . . . . . . . . 21  |-  ( e  =  y  ->  (
e  ||  N  <->  y  ||  N ) )
7977, 78anbi12d 747 . . . . . . . . . . . . . . . . . . . 20  |-  ( e  =  y  ->  (
( e  ||  M  /\  e  ||  N )  <-> 
( y  ||  M  /\  y  ||  N ) ) )
80 breq1 4656 . . . . . . . . . . . . . . . . . . . 20  |-  ( e  =  y  ->  (
e  ||  D  <->  y  ||  D ) )
8179, 80imbi12d 334 . . . . . . . . . . . . . . . . . . 19  |-  ( e  =  y  ->  (
( ( e  ||  M  /\  e  ||  N
)  ->  e  ||  D )  <->  ( (
y  ||  M  /\  y  ||  N )  -> 
y  ||  D )
) )
8281rspcv 3305 . . . . . . . . . . . . . . . . . 18  |-  ( y  e.  ZZ  ->  ( A. e  e.  ZZ  ( ( e  ||  M  /\  e  ||  N
)  ->  e  ||  D )  ->  (
( y  ||  M  /\  y  ||  N )  ->  y  ||  D
) ) )
8382com23 86 . . . . . . . . . . . . . . . . 17  |-  ( y  e.  ZZ  ->  (
( y  ||  M  /\  y  ||  N )  ->  ( A. e  e.  ZZ  ( ( e 
||  M  /\  e  ||  N )  ->  e  ||  D )  ->  y  ||  D ) ) )
8483imp 445 . . . . . . . . . . . . . . . 16  |-  ( ( y  e.  ZZ  /\  ( y  ||  M  /\  y  ||  N ) )  ->  ( A. e  e.  ZZ  (
( e  ||  M  /\  e  ||  N )  ->  e  ||  D
)  ->  y  ||  D ) )
8584ad2antrr 762 . . . . . . . . . . . . . . 15  |-  ( ( ( ( y  e.  ZZ  /\  ( y 
||  M  /\  y  ||  N ) )  /\  -.  ( M  =  0  /\  N  =  0 ) )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  -> 
( A. e  e.  ZZ  ( ( e 
||  M  /\  e  ||  N )  ->  e  ||  D )  ->  y  ||  D ) )
86 elnn0z 11390 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( D  e.  NN0  <->  ( D  e.  ZZ  /\  0  <_  D ) )
8786simplbi2 655 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( D  e.  ZZ  ->  (
0  <_  D  ->  D  e.  NN0 ) )
8887adantr 481 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( D  e.  ZZ  /\  M  e.  ZZ )  ->  ( 0  <_  D  ->  D  e.  NN0 )
)
8967, 88syl 17 . . . . . . . . . . . . . . . . . . . 20  |-  ( D 
||  M  ->  (
0  <_  D  ->  D  e.  NN0 ) )
9089adantr 481 . . . . . . . . . . . . . . . . . . 19  |-  ( ( D  ||  M  /\  D  ||  N )  -> 
( 0  <_  D  ->  D  e.  NN0 )
)
9190impcom 446 . . . . . . . . . . . . . . . . . 18  |-  ( ( 0  <_  D  /\  ( D  ||  M  /\  D  ||  N ) )  ->  D  e.  NN0 )
92 simp-4l 806 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ( y  e.  ZZ  /\  (
y  ||  M  /\  y  ||  N ) )  /\  -.  ( M  =  0  /\  N  =  0 ) )  /\  D  e.  NN0 )  /\  ( 0  <_  D  /\  ( D  ||  M  /\  D  ||  N
) ) )  -> 
y  e.  ZZ )
93 elnn0 11294 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( D  e.  NN0  <->  ( D  e.  NN  \/  D  =  0 ) )
94 2a1 28 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( D  e.  NN  ->  (
( ( y  e.  ZZ  /\  ( y 
||  M  /\  y  ||  N ) )  /\  -.  ( M  =  0  /\  N  =  0 ) )  ->  (
( 0  <_  D  /\  ( D  ||  M  /\  D  ||  N ) )  ->  D  e.  NN ) ) )
95 breq1 4656 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  ( D  =  0  ->  ( D  ||  M  <->  0  ||  M ) )
96 breq1 4656 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  ( D  =  0  ->  ( D  ||  N  <->  0  ||  N ) )
9795, 96anbi12d 747 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( D  =  0  ->  (
( D  ||  M  /\  D  ||  N )  <-> 
( 0  ||  M  /\  0  ||  N ) ) )
9897anbi2d 740 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( D  =  0  ->  (
( 0  <_  D  /\  ( D  ||  M  /\  D  ||  N ) )  <->  ( 0  <_  D  /\  ( 0  ||  M  /\  0  ||  N
) ) ) )
9998adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( ( D  =  0  /\  ( ( y  e.  ZZ  /\  ( y 
||  M  /\  y  ||  N ) )  /\  -.  ( M  =  0  /\  N  =  0 ) ) )  -> 
( ( 0  <_  D  /\  ( D  ||  M  /\  D  ||  N
) )  <->  ( 0  <_  D  /\  (
0  ||  M  /\  0  ||  N ) ) ) )
100 ianor 509 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  ( -.  ( M  =  0  /\  N  =  0 )  <->  ( -.  M  =  0  \/  -.  N  =  0 ) )
101 dvdszrcl 14988 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  |-  ( 0 
||  M  ->  (
0  e.  ZZ  /\  M  e.  ZZ )
)
102 0dvds 15002 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  |-  ( M  e.  ZZ  ->  (
0  ||  M  <->  M  = 
0 ) )
103 pm2.24 121 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  |-  ( M  =  0  ->  ( -.  M  =  0  ->  D  e.  NN ) )
104102, 103syl6bi 243 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  |-  ( M  e.  ZZ  ->  (
0  ||  M  ->  ( -.  M  =  0  ->  D  e.  NN ) ) )
105104adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  |-  ( ( 0  e.  ZZ  /\  M  e.  ZZ )  ->  ( 0  ||  M  ->  ( -.  M  =  0  ->  D  e.  NN ) ) )
106101, 105mpcom 38 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  |-  ( 0 
||  M  ->  ( -.  M  =  0  ->  D  e.  NN ) )
107106adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  |-  ( ( 0  ||  M  /\  0  ||  N )  -> 
( -.  M  =  0  ->  D  e.  NN ) )
108107com12 32 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  |-  ( -.  M  =  0  -> 
( ( 0  ||  M  /\  0  ||  N
)  ->  D  e.  NN ) )
109 dvdszrcl 14988 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  |-  ( 0 
||  N  ->  (
0  e.  ZZ  /\  N  e.  ZZ )
)
110 0dvds 15002 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  |-  ( N  e.  ZZ  ->  (
0  ||  N  <->  N  = 
0 ) )
111 pm2.24 121 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  |-  ( N  =  0  ->  ( -.  N  =  0  ->  D  e.  NN ) )
112110, 111syl6bi 243 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  |-  ( N  e.  ZZ  ->  (
0  ||  N  ->  ( -.  N  =  0  ->  D  e.  NN ) ) )
113112adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  |-  ( ( 0  e.  ZZ  /\  N  e.  ZZ )  ->  ( 0  ||  N  ->  ( -.  N  =  0  ->  D  e.  NN ) ) )
114109, 113mpcom 38 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  |-  ( 0 
||  N  ->  ( -.  N  =  0  ->  D  e.  NN ) )
115114adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  |-  ( ( 0  ||  M  /\  0  ||  N )  -> 
( -.  N  =  0  ->  D  e.  NN ) )
116115com12 32 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  |-  ( -.  N  =  0  -> 
( ( 0  ||  M  /\  0  ||  N
)  ->  D  e.  NN ) )
117108, 116jaoi 394 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  ( ( -.  M  =  0  \/  -.  N  =  0 )  ->  (
( 0  ||  M  /\  0  ||  N )  ->  D  e.  NN ) )
118100, 117sylbi 207 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( -.  ( M  =  0  /\  N  =  0 )  ->  ( (
0  ||  M  /\  0  ||  N )  ->  D  e.  NN )
)
119118adantld 483 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( -.  ( M  =  0  /\  N  =  0 )  ->  ( (
0  <_  D  /\  ( 0  ||  M  /\  0  ||  N ) )  ->  D  e.  NN ) )
120119ad2antll 765 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( ( D  =  0  /\  ( ( y  e.  ZZ  /\  ( y 
||  M  /\  y  ||  N ) )  /\  -.  ( M  =  0  /\  N  =  0 ) ) )  -> 
( ( 0  <_  D  /\  ( 0  ||  M  /\  0  ||  N
) )  ->  D  e.  NN ) )
12199, 120sylbid 230 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( D  =  0  /\  ( ( y  e.  ZZ  /\  ( y 
||  M  /\  y  ||  N ) )  /\  -.  ( M  =  0  /\  N  =  0 ) ) )  -> 
( ( 0  <_  D  /\  ( D  ||  M  /\  D  ||  N
) )  ->  D  e.  NN ) )
122121ex 450 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( D  =  0  ->  (
( ( y  e.  ZZ  /\  ( y 
||  M  /\  y  ||  N ) )  /\  -.  ( M  =  0  /\  N  =  0 ) )  ->  (
( 0  <_  D  /\  ( D  ||  M  /\  D  ||  N ) )  ->  D  e.  NN ) ) )
12394, 122jaoi 394 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( D  e.  NN  \/  D  =  0 )  ->  ( ( ( y  e.  ZZ  /\  ( y  ||  M  /\  y  ||  N ) )  /\  -.  ( M  =  0  /\  N  =  0 ) )  ->  ( (
0  <_  D  /\  ( D  ||  M  /\  D  ||  N ) )  ->  D  e.  NN ) ) )
12493, 123sylbi 207 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( D  e.  NN0  ->  ( ( ( y  e.  ZZ  /\  ( y  ||  M  /\  y  ||  N ) )  /\  -.  ( M  =  0  /\  N  =  0 ) )  ->  ( (
0  <_  D  /\  ( D  ||  M  /\  D  ||  N ) )  ->  D  e.  NN ) ) )
125124impcom 446 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ( y  e.  ZZ  /\  ( y 
||  M  /\  y  ||  N ) )  /\  -.  ( M  =  0  /\  N  =  0 ) )  /\  D  e.  NN0 )  ->  (
( 0  <_  D  /\  ( D  ||  M  /\  D  ||  N ) )  ->  D  e.  NN ) )
126125imp 445 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ( y  e.  ZZ  /\  (
y  ||  M  /\  y  ||  N ) )  /\  -.  ( M  =  0  /\  N  =  0 ) )  /\  D  e.  NN0 )  /\  ( 0  <_  D  /\  ( D  ||  M  /\  D  ||  N
) ) )  ->  D  e.  NN )
127 dvdsle 15032 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( y  e.  ZZ  /\  D  e.  NN )  ->  ( y  ||  D  ->  y  <_  D )
)
12892, 126, 127syl2anc 693 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ( y  e.  ZZ  /\  (
y  ||  M  /\  y  ||  N ) )  /\  -.  ( M  =  0  /\  N  =  0 ) )  /\  D  e.  NN0 )  /\  ( 0  <_  D  /\  ( D  ||  M  /\  D  ||  N
) ) )  -> 
( y  ||  D  ->  y  <_  D )
)
129128exp31 630 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( y  e.  ZZ  /\  ( y  ||  M  /\  y  ||  N ) )  /\  -.  ( M  =  0  /\  N  =  0 ) )  ->  ( D  e.  NN0  ->  ( (
0  <_  D  /\  ( D  ||  M  /\  D  ||  N ) )  ->  ( y  ||  D  ->  y  <_  D
) ) ) )
130129com14 96 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( y 
||  D  ->  ( D  e.  NN0  ->  (
( 0  <_  D  /\  ( D  ||  M  /\  D  ||  N ) )  ->  ( (
( y  e.  ZZ  /\  ( y  ||  M  /\  y  ||  N ) )  /\  -.  ( M  =  0  /\  N  =  0 ) )  ->  y  <_  D ) ) ) )
131130imp 445 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( y  ||  D  /\  D  e.  NN0 )  -> 
( ( 0  <_  D  /\  ( D  ||  M  /\  D  ||  N
) )  ->  (
( ( y  e.  ZZ  /\  ( y 
||  M  /\  y  ||  N ) )  /\  -.  ( M  =  0  /\  N  =  0 ) )  ->  y  <_  D ) ) )
132131impcom 446 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( 0  <_  D  /\  ( D  ||  M  /\  D  ||  N ) )  /\  ( y 
||  D  /\  D  e.  NN0 ) )  -> 
( ( ( y  e.  ZZ  /\  (
y  ||  M  /\  y  ||  N ) )  /\  -.  ( M  =  0  /\  N  =  0 ) )  ->  y  <_  D
) )
133132imp 445 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( 0  <_  D  /\  ( D  ||  M  /\  D  ||  N
) )  /\  (
y  ||  D  /\  D  e.  NN0 ) )  /\  ( ( y  e.  ZZ  /\  (
y  ||  M  /\  y  ||  N ) )  /\  -.  ( M  =  0  /\  N  =  0 ) ) )  ->  y  <_  D )
134 zre 11381 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( y  e.  ZZ  ->  y  e.  RR )
135134ad2antrr 762 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( y  e.  ZZ  /\  ( y  ||  M  /\  y  ||  N ) )  /\  -.  ( M  =  0  /\  N  =  0 ) )  ->  y  e.  RR )
13670ad2antlr 763 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( 0  <_  D  /\  ( D  ||  M  /\  D  ||  N ) )  /\  ( y 
||  D  /\  D  e.  NN0 ) )  ->  D  e.  RR )
137 lenlt 10116 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( y  e.  RR  /\  D  e.  RR )  ->  ( y  <_  D  <->  -.  D  <  y ) )
138135, 136, 137syl2anr 495 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( 0  <_  D  /\  ( D  ||  M  /\  D  ||  N
) )  /\  (
y  ||  D  /\  D  e.  NN0 ) )  /\  ( ( y  e.  ZZ  /\  (
y  ||  M  /\  y  ||  N ) )  /\  -.  ( M  =  0  /\  N  =  0 ) ) )  ->  ( y  <_  D  <->  -.  D  <  y ) )
139133, 138mpbid 222 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( 0  <_  D  /\  ( D  ||  M  /\  D  ||  N
) )  /\  (
y  ||  D  /\  D  e.  NN0 ) )  /\  ( ( y  e.  ZZ  /\  (
y  ||  M  /\  y  ||  N ) )  /\  -.  ( M  =  0  /\  N  =  0 ) ) )  ->  -.  D  <  y )
140139exp31 630 . . . . . . . . . . . . . . . . . 18  |-  ( ( 0  <_  D  /\  ( D  ||  M  /\  D  ||  N ) )  ->  ( ( y 
||  D  /\  D  e.  NN0 )  ->  (
( ( y  e.  ZZ  /\  ( y 
||  M  /\  y  ||  N ) )  /\  -.  ( M  =  0  /\  N  =  0 ) )  ->  -.  D  <  y ) ) )
14191, 140mpan2d 710 . . . . . . . . . . . . . . . . 17  |-  ( ( 0  <_  D  /\  ( D  ||  M  /\  D  ||  N ) )  ->  ( y  ||  D  ->  ( ( ( y  e.  ZZ  /\  ( y  ||  M  /\  y  ||  N ) )  /\  -.  ( M  =  0  /\  N  =  0 ) )  ->  -.  D  <  y ) ) )
142141com13 88 . . . . . . . . . . . . . . . 16  |-  ( ( ( y  e.  ZZ  /\  ( y  ||  M  /\  y  ||  N ) )  /\  -.  ( M  =  0  /\  N  =  0 ) )  ->  ( y  ||  D  ->  ( ( 0  <_  D  /\  ( D  ||  M  /\  D  ||  N ) )  ->  -.  D  <  y ) ) )
143142adantr 481 . . . . . . . . . . . . . . 15  |-  ( ( ( ( y  e.  ZZ  /\  ( y 
||  M  /\  y  ||  N ) )  /\  -.  ( M  =  0  /\  N  =  0 ) )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  -> 
( y  ||  D  ->  ( ( 0  <_  D  /\  ( D  ||  M  /\  D  ||  N
) )  ->  -.  D  <  y ) ) )
14485, 143syld 47 . . . . . . . . . . . . . 14  |-  ( ( ( ( y  e.  ZZ  /\  ( y 
||  M  /\  y  ||  N ) )  /\  -.  ( M  =  0  /\  N  =  0 ) )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  -> 
( A. e  e.  ZZ  ( ( e 
||  M  /\  e  ||  N )  ->  e  ||  D )  ->  (
( 0  <_  D  /\  ( D  ||  M  /\  D  ||  N ) )  ->  -.  D  <  y ) ) )
145144com13 88 . . . . . . . . . . . . 13  |-  ( ( 0  <_  D  /\  ( D  ||  M  /\  D  ||  N ) )  ->  ( A. e  e.  ZZ  ( ( e 
||  M  /\  e  ||  N )  ->  e  ||  D )  ->  (
( ( ( y  e.  ZZ  /\  (
y  ||  M  /\  y  ||  N ) )  /\  -.  ( M  =  0  /\  N  =  0 ) )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  ->  -.  D  <  y ) ) )
146145ex 450 . . . . . . . . . . . 12  |-  ( 0  <_  D  ->  (
( D  ||  M  /\  D  ||  N )  ->  ( A. e  e.  ZZ  ( ( e 
||  M  /\  e  ||  N )  ->  e  ||  D )  ->  (
( ( ( y  e.  ZZ  /\  (
y  ||  M  /\  y  ||  N ) )  /\  -.  ( M  =  0  /\  N  =  0 ) )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  ->  -.  D  <  y ) ) ) )
1471463imp 1256 . . . . . . . . . . 11  |-  ( ( 0  <_  D  /\  ( D  ||  M  /\  D  ||  N )  /\  A. e  e.  ZZ  (
( e  ||  M  /\  e  ||  N )  ->  e  ||  D
) )  ->  (
( ( ( y  e.  ZZ  /\  (
y  ||  M  /\  y  ||  N ) )  /\  -.  ( M  =  0  /\  N  =  0 ) )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  ->  -.  D  <  y ) )
148147com12 32 . . . . . . . . . 10  |-  ( ( ( ( y  e.  ZZ  /\  ( y 
||  M  /\  y  ||  N ) )  /\  -.  ( M  =  0  /\  N  =  0 ) )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  -> 
( ( 0  <_  D  /\  ( D  ||  M  /\  D  ||  N
)  /\  A. e  e.  ZZ  ( ( e 
||  M  /\  e  ||  N )  ->  e  ||  D ) )  ->  -.  D  <  y ) )
149148expimpd 629 . . . . . . . . 9  |-  ( ( ( y  e.  ZZ  /\  ( y  ||  M  /\  y  ||  N ) )  /\  -.  ( M  =  0  /\  N  =  0 ) )  ->  ( (
( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( 0  <_  D  /\  ( D  ||  M  /\  D  ||  N
)  /\  A. e  e.  ZZ  ( ( e 
||  M  /\  e  ||  N )  ->  e  ||  D ) ) )  ->  -.  D  <  y ) )
150149expimpd 629 . . . . . . . 8  |-  ( ( y  e.  ZZ  /\  ( y  ||  M  /\  y  ||  N ) )  ->  ( ( -.  ( M  =  0  /\  N  =  0 )  /\  ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( 0  <_  D  /\  ( D  ||  M  /\  D  ||  N )  /\  A. e  e.  ZZ  ( ( e 
||  M  /\  e  ||  N )  ->  e  ||  D ) ) ) )  ->  -.  D  <  y ) )
15176, 150sylbi 207 . . . . . . 7  |-  ( y  e.  { n  e.  ZZ  |  ( n 
||  M  /\  n  ||  N ) }  ->  ( ( -.  ( M  =  0  /\  N  =  0 )  /\  ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  (
0  <_  D  /\  ( D  ||  M  /\  D  ||  N )  /\  A. e  e.  ZZ  (
( e  ||  M  /\  e  ||  N )  ->  e  ||  D
) ) ) )  ->  -.  D  <  y ) )
152151impcom 446 . . . . . 6  |-  ( ( ( -.  ( M  =  0  /\  N  =  0 )  /\  ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  (
0  <_  D  /\  ( D  ||  M  /\  D  ||  N )  /\  A. e  e.  ZZ  (
( e  ||  M  /\  e  ||  N )  ->  e  ||  D
) ) ) )  /\  y  e.  {
n  e.  ZZ  | 
( n  ||  M  /\  n  ||  N ) } )  ->  -.  D  <  y )
15368adantr 481 . . . . . . . . . . . 12  |-  ( ( D  ||  M  /\  D  ||  N )  ->  D  e.  ZZ )
154153ancri 575 . . . . . . . . . . 11  |-  ( ( D  ||  M  /\  D  ||  N )  -> 
( D  e.  ZZ  /\  ( D  ||  M  /\  D  ||  N ) ) )
1551543ad2ant2 1083 . . . . . . . . . 10  |-  ( ( 0  <_  D  /\  ( D  ||  M  /\  D  ||  N )  /\  A. e  e.  ZZ  (
( e  ||  M  /\  e  ||  N )  ->  e  ||  D
) )  ->  ( D  e.  ZZ  /\  ( D  ||  M  /\  D  ||  N ) ) )
156155ad2antll 765 . . . . . . . . 9  |-  ( ( -.  ( M  =  0  /\  N  =  0 )  /\  (
( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( 0  <_  D  /\  ( D  ||  M  /\  D  ||  N
)  /\  A. e  e.  ZZ  ( ( e 
||  M  /\  e  ||  N )  ->  e  ||  D ) ) ) )  ->  ( D  e.  ZZ  /\  ( D 
||  M  /\  D  ||  N ) ) )
157156adantr 481 . . . . . . . 8  |-  ( ( ( -.  ( M  =  0  /\  N  =  0 )  /\  ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  (
0  <_  D  /\  ( D  ||  M  /\  D  ||  N )  /\  A. e  e.  ZZ  (
( e  ||  M  /\  e  ||  N )  ->  e  ||  D
) ) ) )  /\  ( y  e.  RR  /\  y  < 
D ) )  -> 
( D  e.  ZZ  /\  ( D  ||  M  /\  D  ||  N ) ) )
158 breq1 4656 . . . . . . . . . 10  |-  ( n  =  D  ->  (
n  ||  M  <->  D  ||  M
) )
159 breq1 4656 . . . . . . . . . 10  |-  ( n  =  D  ->  (
n  ||  N  <->  D  ||  N
) )
160158, 159anbi12d 747 . . . . . . . . 9  |-  ( n  =  D  ->  (
( n  ||  M  /\  n  ||  N )  <-> 
( D  ||  M  /\  D  ||  N ) ) )
161160elrab 3363 . . . . . . . 8  |-  ( D  e.  { n  e.  ZZ  |  ( n 
||  M  /\  n  ||  N ) }  <->  ( D  e.  ZZ  /\  ( D 
||  M  /\  D  ||  N ) ) )
162157, 161sylibr 224 . . . . . . 7  |-  ( ( ( -.  ( M  =  0  /\  N  =  0 )  /\  ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  (
0  <_  D  /\  ( D  ||  M  /\  D  ||  N )  /\  A. e  e.  ZZ  (
( e  ||  M  /\  e  ||  N )  ->  e  ||  D
) ) ) )  /\  ( y  e.  RR  /\  y  < 
D ) )  ->  D  e.  { n  e.  ZZ  |  ( n 
||  M  /\  n  ||  N ) } )
163 breq2 4657 . . . . . . . 8  |-  ( z  =  D  ->  (
y  <  z  <->  y  <  D ) )
164163adantl 482 . . . . . . 7  |-  ( ( ( ( -.  ( M  =  0  /\  N  =  0 )  /\  ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  (
0  <_  D  /\  ( D  ||  M  /\  D  ||  N )  /\  A. e  e.  ZZ  (
( e  ||  M  /\  e  ||  N )  ->  e  ||  D
) ) ) )  /\  ( y  e.  RR  /\  y  < 
D ) )  /\  z  =  D )  ->  ( y  <  z  <->  y  <  D ) )
165 simprr 796 . . . . . . 7  |-  ( ( ( -.  ( M  =  0  /\  N  =  0 )  /\  ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  (
0  <_  D  /\  ( D  ||  M  /\  D  ||  N )  /\  A. e  e.  ZZ  (
( e  ||  M  /\  e  ||  N )  ->  e  ||  D
) ) ) )  /\  ( y  e.  RR  /\  y  < 
D ) )  -> 
y  <  D )
166162, 164, 165rspcedvd 3317 . . . . . 6  |-  ( ( ( -.  ( M  =  0  /\  N  =  0 )  /\  ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  (
0  <_  D  /\  ( D  ||  M  /\  D  ||  N )  /\  A. e  e.  ZZ  (
( e  ||  M  /\  e  ||  N )  ->  e  ||  D
) ) ) )  /\  ( y  e.  RR  /\  y  < 
D ) )  ->  E. z  e.  { n  e.  ZZ  |  ( n 
||  M  /\  n  ||  N ) } y  <  z )
16766, 72, 152, 166eqsupd 8363 . . . . 5  |-  ( ( -.  ( M  =  0  /\  N  =  0 )  /\  (
( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( 0  <_  D  /\  ( D  ||  M  /\  D  ||  N
)  /\  A. e  e.  ZZ  ( ( e 
||  M  /\  e  ||  N )  ->  e  ||  D ) ) ) )  ->  sup ( { n  e.  ZZ  |  ( n  ||  M  /\  n  ||  N
) } ,  RR ,  <  )  =  D )
16864, 167eqtrd 2656 . . . 4  |-  ( ( -.  ( M  =  0  /\  N  =  0 )  /\  (
( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( 0  <_  D  /\  ( D  ||  M  /\  D  ||  N
)  /\  A. e  e.  ZZ  ( ( e 
||  M  /\  e  ||  N )  ->  e  ||  D ) ) ) )  ->  if (
( M  =  0  /\  N  =  0 ) ,  0 ,  sup ( { n  e.  ZZ  |  ( n 
||  M  /\  n  ||  N ) } ,  RR ,  <  ) )  =  D )
16962, 168pm2.61ian 831 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( 0  <_  D  /\  ( D  ||  M  /\  D  ||  N
)  /\  A. e  e.  ZZ  ( ( e 
||  M  /\  e  ||  N )  ->  e  ||  D ) ) )  ->  if ( ( M  =  0  /\  N  =  0 ) ,  0 ,  sup ( { n  e.  ZZ  |  ( n  ||  M  /\  n  ||  N
) } ,  RR ,  <  ) )  =  D )
17023, 169eqtr2d 2657 . 2  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( 0  <_  D  /\  ( D  ||  M  /\  D  ||  N
)  /\  A. e  e.  ZZ  ( ( e 
||  M  /\  e  ||  N )  ->  e  ||  D ) ) )  ->  D  =  ( M  gcd  N ) )
17121, 170impbida 877 1  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( D  =  ( M  gcd  N )  <-> 
( 0  <_  D  /\  ( D  ||  M  /\  D  ||  N )  /\  A. e  e.  ZZ  ( ( e 
||  M  /\  e  ||  N )  ->  e  ||  D ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   {crab 2916   ifcif 4086   class class class wbr 4653    Or wor 5034  (class class class)co 6650   supcsup 8346   RRcr 9935   0cc0 9936    < clt 10074    <_ cle 10075   NNcn 11020   NN0cn0 11292   ZZcz 11377    || cdvds 14983    gcd cgcd 15216
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-dvds 14984  df-gcd 15217
This theorem is referenced by:  dfgcd3  33170
  Copyright terms: Public domain W3C validator