| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ghmf1o | Structured version Visualization version Unicode version | ||
| Description: A bijective group homomorphism is an isomorphism. (Contributed by Mario Carneiro, 13-Jan-2015.) |
| Ref | Expression |
|---|---|
| ghmf1o.x |
|
| ghmf1o.y |
|
| Ref | Expression |
|---|---|
| ghmf1o |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ghmgrp2 17663 |
. . . . 5
| |
| 2 | ghmgrp1 17662 |
. . . . 5
| |
| 3 | 1, 2 | jca 554 |
. . . 4
|
| 4 | 3 | adantr 481 |
. . 3
|
| 5 | f1ocnv 6149 |
. . . . . 6
| |
| 6 | 5 | adantl 482 |
. . . . 5
|
| 7 | f1of 6137 |
. . . . 5
| |
| 8 | 6, 7 | syl 17 |
. . . 4
|
| 9 | simpll 790 |
. . . . . . . 8
| |
| 10 | 8 | adantr 481 |
. . . . . . . . 9
|
| 11 | simprl 794 |
. . . . . . . . 9
| |
| 12 | 10, 11 | ffvelrnd 6360 |
. . . . . . . 8
|
| 13 | simprr 796 |
. . . . . . . . 9
| |
| 14 | 10, 13 | ffvelrnd 6360 |
. . . . . . . 8
|
| 15 | ghmf1o.x |
. . . . . . . . 9
| |
| 16 | eqid 2622 |
. . . . . . . . 9
| |
| 17 | eqid 2622 |
. . . . . . . . 9
| |
| 18 | 15, 16, 17 | ghmlin 17665 |
. . . . . . . 8
|
| 19 | 9, 12, 14, 18 | syl3anc 1326 |
. . . . . . 7
|
| 20 | simplr 792 |
. . . . . . . . 9
| |
| 21 | f1ocnvfv2 6533 |
. . . . . . . . 9
| |
| 22 | 20, 11, 21 | syl2anc 693 |
. . . . . . . 8
|
| 23 | f1ocnvfv2 6533 |
. . . . . . . . 9
| |
| 24 | 20, 13, 23 | syl2anc 693 |
. . . . . . . 8
|
| 25 | 22, 24 | oveq12d 6668 |
. . . . . . 7
|
| 26 | 19, 25 | eqtrd 2656 |
. . . . . 6
|
| 27 | 9, 2 | syl 17 |
. . . . . . . 8
|
| 28 | 15, 16 | grpcl 17430 |
. . . . . . . 8
|
| 29 | 27, 12, 14, 28 | syl3anc 1326 |
. . . . . . 7
|
| 30 | f1ocnvfv 6534 |
. . . . . . 7
| |
| 31 | 20, 29, 30 | syl2anc 693 |
. . . . . 6
|
| 32 | 26, 31 | mpd 15 |
. . . . 5
|
| 33 | 32 | ralrimivva 2971 |
. . . 4
|
| 34 | 8, 33 | jca 554 |
. . 3
|
| 35 | ghmf1o.y |
. . . 4
| |
| 36 | 35, 15, 17, 16 | isghm 17660 |
. . 3
|
| 37 | 4, 34, 36 | sylanbrc 698 |
. 2
|
| 38 | 15, 35 | ghmf 17664 |
. . . . 5
|
| 39 | 38 | adantr 481 |
. . . 4
|
| 40 | ffn 6045 |
. . . 4
| |
| 41 | 39, 40 | syl 17 |
. . 3
|
| 42 | 35, 15 | ghmf 17664 |
. . . . 5
|
| 43 | 42 | adantl 482 |
. . . 4
|
| 44 | ffn 6045 |
. . . 4
| |
| 45 | 43, 44 | syl 17 |
. . 3
|
| 46 | dff1o4 6145 |
. . 3
| |
| 47 | 41, 45, 46 | sylanbrc 698 |
. 2
|
| 48 | 37, 47 | impbida 877 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-mgm 17242 df-sgrp 17284 df-mnd 17295 df-grp 17425 df-ghm 17658 |
| This theorem is referenced by: isgim2 17707 rhmf1o 18732 lmhmf1o 19046 rnghmf1o 41903 |
| Copyright terms: Public domain | W3C validator |