| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ghmf1 | Structured version Visualization version Unicode version | ||
| Description: Two ways of saying a group homomorphism is 1-1 into its codomain. (Contributed by Paul Chapman, 3-Mar-2008.) (Revised by Mario Carneiro, 13-Jan-2015.) |
| Ref | Expression |
|---|---|
| ghmf1.x |
|
| ghmf1.y |
|
| ghmf1.z |
|
| ghmf1.u |
|
| Ref | Expression |
|---|---|
| ghmf1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ghmf1.z |
. . . . . . . 8
| |
| 2 | ghmf1.u |
. . . . . . . 8
| |
| 3 | 1, 2 | ghmid 17666 |
. . . . . . 7
|
| 4 | 3 | ad2antrr 762 |
. . . . . 6
|
| 5 | 4 | eqeq2d 2632 |
. . . . 5
|
| 6 | simplr 792 |
. . . . . 6
| |
| 7 | simpr 477 |
. . . . . 6
| |
| 8 | ghmgrp1 17662 |
. . . . . . . 8
| |
| 9 | 8 | ad2antrr 762 |
. . . . . . 7
|
| 10 | ghmf1.x |
. . . . . . . 8
| |
| 11 | 10, 1 | grpidcl 17450 |
. . . . . . 7
|
| 12 | 9, 11 | syl 17 |
. . . . . 6
|
| 13 | f1fveq 6519 |
. . . . . 6
| |
| 14 | 6, 7, 12, 13 | syl12anc 1324 |
. . . . 5
|
| 15 | 5, 14 | bitr3d 270 |
. . . 4
|
| 16 | 15 | biimpd 219 |
. . 3
|
| 17 | 16 | ralrimiva 2966 |
. 2
|
| 18 | ghmf1.y |
. . . . 5
| |
| 19 | 10, 18 | ghmf 17664 |
. . . 4
|
| 20 | 19 | adantr 481 |
. . 3
|
| 21 | eqid 2622 |
. . . . . . . . . 10
| |
| 22 | eqid 2622 |
. . . . . . . . . 10
| |
| 23 | 10, 21, 22 | ghmsub 17668 |
. . . . . . . . 9
|
| 24 | 23 | 3expb 1266 |
. . . . . . . 8
|
| 25 | 24 | adantlr 751 |
. . . . . . 7
|
| 26 | 25 | eqeq1d 2624 |
. . . . . 6
|
| 27 | 8 | adantr 481 |
. . . . . . . 8
|
| 28 | 10, 21 | grpsubcl 17495 |
. . . . . . . . 9
|
| 29 | 28 | 3expb 1266 |
. . . . . . . 8
|
| 30 | 27, 29 | sylan 488 |
. . . . . . 7
|
| 31 | simplr 792 |
. . . . . . 7
| |
| 32 | fveq2 6191 |
. . . . . . . . . 10
| |
| 33 | 32 | eqeq1d 2624 |
. . . . . . . . 9
|
| 34 | eqeq1 2626 |
. . . . . . . . 9
| |
| 35 | 33, 34 | imbi12d 334 |
. . . . . . . 8
|
| 36 | 35 | rspcv 3305 |
. . . . . . 7
|
| 37 | 30, 31, 36 | sylc 65 |
. . . . . 6
|
| 38 | 26, 37 | sylbird 250 |
. . . . 5
|
| 39 | ghmgrp2 17663 |
. . . . . . 7
| |
| 40 | 39 | ad2antrr 762 |
. . . . . 6
|
| 41 | 19 | ad2antrr 762 |
. . . . . . 7
|
| 42 | simprl 794 |
. . . . . . 7
| |
| 43 | 41, 42 | ffvelrnd 6360 |
. . . . . 6
|
| 44 | simprr 796 |
. . . . . . 7
| |
| 45 | 41, 44 | ffvelrnd 6360 |
. . . . . 6
|
| 46 | 18, 2, 22 | grpsubeq0 17501 |
. . . . . 6
|
| 47 | 40, 43, 45, 46 | syl3anc 1326 |
. . . . 5
|
| 48 | 8 | ad2antrr 762 |
. . . . . 6
|
| 49 | 10, 1, 21 | grpsubeq0 17501 |
. . . . . 6
|
| 50 | 48, 42, 44, 49 | syl3anc 1326 |
. . . . 5
|
| 51 | 38, 47, 50 | 3imtr3d 282 |
. . . 4
|
| 52 | 51 | ralrimivva 2971 |
. . 3
|
| 53 | dff13 6512 |
. . 3
| |
| 54 | 20, 52, 53 | sylanbrc 698 |
. 2
|
| 55 | 17, 54 | impbida 877 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 df-0g 16102 df-mgm 17242 df-sgrp 17284 df-mnd 17295 df-grp 17425 df-minusg 17426 df-sbg 17427 df-ghm 17658 |
| This theorem is referenced by: cayleylem2 17833 f1rhm0to0ALT 18741 fidomndrnglem 19306 islindf5 20178 pwssplit4 37659 |
| Copyright terms: Public domain | W3C validator |