Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  polval2N Structured version   Visualization version   Unicode version

Theorem polval2N 35192
Description: Alternate expression for value of the projective subspace polarity function. Equation for polarity in [Holland95] p. 223. (Contributed by NM, 22-Jan-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
polval2.u  |-  U  =  ( lub `  K
)
polval2.o  |-  ._|_  =  ( oc `  K )
polval2.a  |-  A  =  ( Atoms `  K )
polval2.m  |-  M  =  ( pmap `  K
)
polval2.p  |-  P  =  ( _|_P `  K )
Assertion
Ref Expression
polval2N  |-  ( ( K  e.  HL  /\  X  C_  A )  -> 
( P `  X
)  =  ( M `
 (  ._|_  `  ( U `  X )
) ) )

Proof of Theorem polval2N
Dummy variables  x  p are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 polval2.o . . 3  |-  ._|_  =  ( oc `  K )
2 polval2.a . . 3  |-  A  =  ( Atoms `  K )
3 polval2.m . . 3  |-  M  =  ( pmap `  K
)
4 polval2.p . . 3  |-  P  =  ( _|_P `  K )
51, 2, 3, 4polvalN 35191 . 2  |-  ( ( K  e.  HL  /\  X  C_  A )  -> 
( P `  X
)  =  ( A  i^i  |^|_ p  e.  X  ( M `  (  ._|_  `  p ) ) ) )
6 hlop 34649 . . . . . 6  |-  ( K  e.  HL  ->  K  e.  OP )
76ad2antrr 762 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  C_  A )  /\  p  e.  X
)  ->  K  e.  OP )
8 ssel2 3598 . . . . . . 7  |-  ( ( X  C_  A  /\  p  e.  X )  ->  p  e.  A )
98adantll 750 . . . . . 6  |-  ( ( ( K  e.  HL  /\  X  C_  A )  /\  p  e.  X
)  ->  p  e.  A )
10 eqid 2622 . . . . . . 7  |-  ( Base `  K )  =  (
Base `  K )
1110, 2atbase 34576 . . . . . 6  |-  ( p  e.  A  ->  p  e.  ( Base `  K
) )
129, 11syl 17 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  C_  A )  /\  p  e.  X
)  ->  p  e.  ( Base `  K )
)
1310, 1opoccl 34481 . . . . 5  |-  ( ( K  e.  OP  /\  p  e.  ( Base `  K ) )  -> 
(  ._|_  `  p )  e.  ( Base `  K
) )
147, 12, 13syl2anc 693 . . . 4  |-  ( ( ( K  e.  HL  /\  X  C_  A )  /\  p  e.  X
)  ->  (  ._|_  `  p )  e.  (
Base `  K )
)
1514ralrimiva 2966 . . 3  |-  ( ( K  e.  HL  /\  X  C_  A )  ->  A. p  e.  X  (  ._|_  `  p )  e.  ( Base `  K
) )
16 eqid 2622 . . . 4  |-  ( glb `  K )  =  ( glb `  K )
1710, 16, 2, 3pmapglb2xN 35058 . . 3  |-  ( ( K  e.  HL  /\  A. p  e.  X  ( 
._|_  `  p )  e.  ( Base `  K
) )  ->  ( M `  ( ( glb `  K ) `  { x  |  E. p  e.  X  x  =  (  ._|_  `  p
) } ) )  =  ( A  i^i  |^|_
p  e.  X  ( M `  (  ._|_  `  p ) ) ) )
1815, 17syldan 487 . 2  |-  ( ( K  e.  HL  /\  X  C_  A )  -> 
( M `  (
( glb `  K
) `  { x  |  E. p  e.  X  x  =  (  ._|_  `  p ) } ) )  =  ( A  i^i  |^|_ p  e.  X  ( M `  (  ._|_  `  p ) ) ) )
19 polval2.u . . . . . 6  |-  U  =  ( lub `  K
)
2010, 19, 16, 1glbconxN 34664 . . . . 5  |-  ( ( K  e.  HL  /\  A. p  e.  X  ( 
._|_  `  p )  e.  ( Base `  K
) )  ->  (
( glb `  K
) `  { x  |  E. p  e.  X  x  =  (  ._|_  `  p ) } )  =  (  ._|_  `  ( U `  { x  |  E. p  e.  X  x  =  (  ._|_  `  (  ._|_  `  p ) ) } ) ) )
2115, 20syldan 487 . . . 4  |-  ( ( K  e.  HL  /\  X  C_  A )  -> 
( ( glb `  K
) `  { x  |  E. p  e.  X  x  =  (  ._|_  `  p ) } )  =  (  ._|_  `  ( U `  { x  |  E. p  e.  X  x  =  (  ._|_  `  (  ._|_  `  p ) ) } ) ) )
2210, 1opococ 34482 . . . . . . . . . . 11  |-  ( ( K  e.  OP  /\  p  e.  ( Base `  K ) )  -> 
(  ._|_  `  (  ._|_  `  p ) )  =  p )
237, 12, 22syl2anc 693 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  X  C_  A )  /\  p  e.  X
)  ->  (  ._|_  `  (  ._|_  `  p ) )  =  p )
2423eqeq2d 2632 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  X  C_  A )  /\  p  e.  X
)  ->  ( x  =  (  ._|_  `  (  ._|_  `  p ) )  <-> 
x  =  p ) )
2524rexbidva 3049 . . . . . . . 8  |-  ( ( K  e.  HL  /\  X  C_  A )  -> 
( E. p  e.  X  x  =  ( 
._|_  `  (  ._|_  `  p
) )  <->  E. p  e.  X  x  =  p ) )
2625abbidv 2741 . . . . . . 7  |-  ( ( K  e.  HL  /\  X  C_  A )  ->  { x  |  E. p  e.  X  x  =  (  ._|_  `  (  ._|_  `  p ) ) }  =  { x  |  E. p  e.  X  x  =  p }
)
27 df-rex 2918 . . . . . . . . . 10  |-  ( E. p  e.  X  x  =  p  <->  E. p
( p  e.  X  /\  x  =  p
) )
28 equcom 1945 . . . . . . . . . . . . 13  |-  ( x  =  p  <->  p  =  x )
2928anbi2i 730 . . . . . . . . . . . 12  |-  ( ( p  e.  X  /\  x  =  p )  <->  ( p  e.  X  /\  p  =  x )
)
30 ancom 466 . . . . . . . . . . . 12  |-  ( ( p  e.  X  /\  p  =  x )  <->  ( p  =  x  /\  p  e.  X )
)
3129, 30bitri 264 . . . . . . . . . . 11  |-  ( ( p  e.  X  /\  x  =  p )  <->  ( p  =  x  /\  p  e.  X )
)
3231exbii 1774 . . . . . . . . . 10  |-  ( E. p ( p  e.  X  /\  x  =  p )  <->  E. p
( p  =  x  /\  p  e.  X
) )
33 vex 3203 . . . . . . . . . . 11  |-  x  e. 
_V
34 eleq1 2689 . . . . . . . . . . 11  |-  ( p  =  x  ->  (
p  e.  X  <->  x  e.  X ) )
3533, 34ceqsexv 3242 . . . . . . . . . 10  |-  ( E. p ( p  =  x  /\  p  e.  X )  <->  x  e.  X )
3627, 32, 353bitri 286 . . . . . . . . 9  |-  ( E. p  e.  X  x  =  p  <->  x  e.  X )
3736abbii 2739 . . . . . . . 8  |-  { x  |  E. p  e.  X  x  =  p }  =  { x  |  x  e.  X }
38 abid2 2745 . . . . . . . 8  |-  { x  |  x  e.  X }  =  X
3937, 38eqtri 2644 . . . . . . 7  |-  { x  |  E. p  e.  X  x  =  p }  =  X
4026, 39syl6eq 2672 . . . . . 6  |-  ( ( K  e.  HL  /\  X  C_  A )  ->  { x  |  E. p  e.  X  x  =  (  ._|_  `  (  ._|_  `  p ) ) }  =  X )
4140fveq2d 6195 . . . . 5  |-  ( ( K  e.  HL  /\  X  C_  A )  -> 
( U `  {
x  |  E. p  e.  X  x  =  (  ._|_  `  (  ._|_  `  p ) ) } )  =  ( U `
 X ) )
4241fveq2d 6195 . . . 4  |-  ( ( K  e.  HL  /\  X  C_  A )  -> 
(  ._|_  `  ( U `  { x  |  E. p  e.  X  x  =  (  ._|_  `  (  ._|_  `  p ) ) } ) )  =  (  ._|_  `  ( U `
 X ) ) )
4321, 42eqtrd 2656 . . 3  |-  ( ( K  e.  HL  /\  X  C_  A )  -> 
( ( glb `  K
) `  { x  |  E. p  e.  X  x  =  (  ._|_  `  p ) } )  =  (  ._|_  `  ( U `  X )
) )
4443fveq2d 6195 . 2  |-  ( ( K  e.  HL  /\  X  C_  A )  -> 
( M `  (
( glb `  K
) `  { x  |  E. p  e.  X  x  =  (  ._|_  `  p ) } ) )  =  ( M `
 (  ._|_  `  ( U `  X )
) ) )
455, 18, 443eqtr2d 2662 1  |-  ( ( K  e.  HL  /\  X  C_  A )  -> 
( P `  X
)  =  ( M `
 (  ._|_  `  ( U `  X )
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   {cab 2608   A.wral 2912   E.wrex 2913    i^i cin 3573    C_ wss 3574   |^|_ciin 4521   ` cfv 5888   Basecbs 15857   occoc 15949   lubclub 16942   glbcglb 16943   OPcops 34459   Atomscatm 34550   HLchlt 34637   pmapcpmap 34783   _|_PcpolN 35188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-riotaBAD 34239
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-undef 7399  df-preset 16928  df-poset 16946  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-p1 17040  df-lat 17046  df-clat 17108  df-oposet 34463  df-ol 34465  df-oml 34466  df-ats 34554  df-hlat 34638  df-pmap 34790  df-polarityN 35189
This theorem is referenced by:  polsubN  35193  pol1N  35196  polpmapN  35198  2polvalN  35200  3polN  35202  poldmj1N  35214  pnonsingN  35219  ispsubcl2N  35233  polsubclN  35238  poml4N  35239
  Copyright terms: Public domain W3C validator