MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iccsplit Structured version   Visualization version   Unicode version

Theorem iccsplit 12305
Description: Split a closed interval into the union of two closed intervals. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
iccsplit  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  ( A [,] B
) )  ->  ( A [,] B )  =  ( ( A [,] C )  u.  ( C [,] B ) ) )

Proof of Theorem iccsplit
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 simplr1 1103 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  ( A [,] B
) )  /\  (
x  e.  RR  /\  A  <_  x  /\  x  <_  B ) )  /\  x  <  C )  ->  x  e.  RR )
2 simplr2 1104 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  ( A [,] B
) )  /\  (
x  e.  RR  /\  A  <_  x  /\  x  <_  B ) )  /\  x  <  C )  ->  A  <_  x )
3 simpr1 1067 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  ( A [,] B ) )  /\  ( x  e.  RR  /\  A  <_  x  /\  x  <_  B ) )  ->  x  e.  RR )
4 iccssre 12255 . . . . . . . . . . . . . 14  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A [,] B
)  C_  RR )
54sseld 3602 . . . . . . . . . . . . 13  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( C  e.  ( A [,] B )  ->  C  e.  RR ) )
653impia 1261 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  ( A [,] B
) )  ->  C  e.  RR )
76adantr 481 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  ( A [,] B ) )  /\  ( x  e.  RR  /\  A  <_  x  /\  x  <_  B ) )  ->  C  e.  RR )
8 ltle 10126 . . . . . . . . . . 11  |-  ( ( x  e.  RR  /\  C  e.  RR )  ->  ( x  <  C  ->  x  <_  C )
)
93, 7, 8syl2anc 693 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  ( A [,] B ) )  /\  ( x  e.  RR  /\  A  <_  x  /\  x  <_  B ) )  ->  ( x  < 
C  ->  x  <_  C ) )
109imp 445 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  ( A [,] B
) )  /\  (
x  e.  RR  /\  A  <_  x  /\  x  <_  B ) )  /\  x  <  C )  ->  x  <_  C )
111, 2, 103jca 1242 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  ( A [,] B
) )  /\  (
x  e.  RR  /\  A  <_  x  /\  x  <_  B ) )  /\  x  <  C )  -> 
( x  e.  RR  /\  A  <_  x  /\  x  <_  C ) )
1211orcd 407 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  ( A [,] B
) )  /\  (
x  e.  RR  /\  A  <_  x  /\  x  <_  B ) )  /\  x  <  C )  -> 
( ( x  e.  RR  /\  A  <_  x  /\  x  <_  C
)  \/  ( x  e.  RR  /\  C  <_  x  /\  x  <_  B ) ) )
13 simplr1 1103 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  ( A [,] B
) )  /\  (
x  e.  RR  /\  A  <_  x  /\  x  <_  B ) )  /\  C  <_  x )  ->  x  e.  RR )
14 simpr 477 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  ( A [,] B
) )  /\  (
x  e.  RR  /\  A  <_  x  /\  x  <_  B ) )  /\  C  <_  x )  ->  C  <_  x )
15 simplr3 1105 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  ( A [,] B
) )  /\  (
x  e.  RR  /\  A  <_  x  /\  x  <_  B ) )  /\  C  <_  x )  ->  x  <_  B )
1613, 14, 153jca 1242 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  ( A [,] B
) )  /\  (
x  e.  RR  /\  A  <_  x  /\  x  <_  B ) )  /\  C  <_  x )  -> 
( x  e.  RR  /\  C  <_  x  /\  x  <_  B ) )
1716olcd 408 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  ( A [,] B
) )  /\  (
x  e.  RR  /\  A  <_  x  /\  x  <_  B ) )  /\  C  <_  x )  -> 
( ( x  e.  RR  /\  A  <_  x  /\  x  <_  C
)  \/  ( x  e.  RR  /\  C  <_  x  /\  x  <_  B ) ) )
1812, 17, 3, 7ltlecasei 10145 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  ( A [,] B ) )  /\  ( x  e.  RR  /\  A  <_  x  /\  x  <_  B ) )  ->  ( ( x  e.  RR  /\  A  <_  x  /\  x  <_  C )  \/  (
x  e.  RR  /\  C  <_  x  /\  x  <_  B ) ) )
1918ex 450 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  ( A [,] B
) )  ->  (
( x  e.  RR  /\  A  <_  x  /\  x  <_  B )  -> 
( ( x  e.  RR  /\  A  <_  x  /\  x  <_  C
)  \/  ( x  e.  RR  /\  C  <_  x  /\  x  <_  B ) ) ) )
20 simp1 1061 . . . . . . . 8  |-  ( ( x  e.  RR  /\  A  <_  x  /\  x  <_  C )  ->  x  e.  RR )
2120a1i 11 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  ( A [,] B
) )  ->  (
( x  e.  RR  /\  A  <_  x  /\  x  <_  C )  ->  x  e.  RR )
)
22 simp2 1062 . . . . . . . 8  |-  ( ( x  e.  RR  /\  A  <_  x  /\  x  <_  C )  ->  A  <_  x )
2322a1i 11 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  ( A [,] B
) )  ->  (
( x  e.  RR  /\  A  <_  x  /\  x  <_  C )  ->  A  <_  x ) )
24 elicc2 12238 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( C  e.  ( A [,] B )  <-> 
( C  e.  RR  /\  A  <_  C  /\  C  <_  B ) ) )
25203ad2ant3 1084 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  A  <_  C  /\  C  <_  B
)  /\  ( x  e.  RR  /\  A  <_  x  /\  x  <_  C
) )  ->  x  e.  RR )
26 simp1 1061 . . . . . . . . . . . 12  |-  ( ( C  e.  RR  /\  A  <_  C  /\  C  <_  B )  ->  C  e.  RR )
27263ad2ant2 1083 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  A  <_  C  /\  C  <_  B
)  /\  ( x  e.  RR  /\  A  <_  x  /\  x  <_  C
) )  ->  C  e.  RR )
28 simp1r 1086 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  A  <_  C  /\  C  <_  B
)  /\  ( x  e.  RR  /\  A  <_  x  /\  x  <_  C
) )  ->  B  e.  RR )
29 simp3 1063 . . . . . . . . . . . 12  |-  ( ( x  e.  RR  /\  A  <_  x  /\  x  <_  C )  ->  x  <_  C )
30293ad2ant3 1084 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  A  <_  C  /\  C  <_  B
)  /\  ( x  e.  RR  /\  A  <_  x  /\  x  <_  C
) )  ->  x  <_  C )
31 simp3 1063 . . . . . . . . . . . 12  |-  ( ( C  e.  RR  /\  A  <_  C  /\  C  <_  B )  ->  C  <_  B )
32313ad2ant2 1083 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  A  <_  C  /\  C  <_  B
)  /\  ( x  e.  RR  /\  A  <_  x  /\  x  <_  C
) )  ->  C  <_  B )
3325, 27, 28, 30, 32letrd 10194 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  A  <_  C  /\  C  <_  B
)  /\  ( x  e.  RR  /\  A  <_  x  /\  x  <_  C
) )  ->  x  <_  B )
34333exp 1264 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( C  e.  RR  /\  A  <_  C  /\  C  <_  B
)  ->  ( (
x  e.  RR  /\  A  <_  x  /\  x  <_  C )  ->  x  <_  B ) ) )
3524, 34sylbid 230 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( C  e.  ( A [,] B )  ->  ( ( x  e.  RR  /\  A  <_  x  /\  x  <_  C )  ->  x  <_  B ) ) )
36353impia 1261 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  ( A [,] B
) )  ->  (
( x  e.  RR  /\  A  <_  x  /\  x  <_  C )  ->  x  <_  B ) )
3721, 23, 363jcad 1243 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  ( A [,] B
) )  ->  (
( x  e.  RR  /\  A  <_  x  /\  x  <_  C )  -> 
( x  e.  RR  /\  A  <_  x  /\  x  <_  B ) ) )
38 simp1 1061 . . . . . . . 8  |-  ( ( x  e.  RR  /\  C  <_  x  /\  x  <_  B )  ->  x  e.  RR )
3938a1i 11 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  ( A [,] B
) )  ->  (
( x  e.  RR  /\  C  <_  x  /\  x  <_  B )  ->  x  e.  RR )
)
40 simp1l 1085 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  A  <_  C  /\  C  <_  B
)  /\  ( x  e.  RR  /\  C  <_  x  /\  x  <_  B
) )  ->  A  e.  RR )
41263ad2ant2 1083 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  A  <_  C  /\  C  <_  B
)  /\  ( x  e.  RR  /\  C  <_  x  /\  x  <_  B
) )  ->  C  e.  RR )
42383ad2ant3 1084 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  A  <_  C  /\  C  <_  B
)  /\  ( x  e.  RR  /\  C  <_  x  /\  x  <_  B
) )  ->  x  e.  RR )
43 simp2 1062 . . . . . . . . . . . 12  |-  ( ( C  e.  RR  /\  A  <_  C  /\  C  <_  B )  ->  A  <_  C )
44433ad2ant2 1083 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  A  <_  C  /\  C  <_  B
)  /\  ( x  e.  RR  /\  C  <_  x  /\  x  <_  B
) )  ->  A  <_  C )
45 simp2 1062 . . . . . . . . . . . 12  |-  ( ( x  e.  RR  /\  C  <_  x  /\  x  <_  B )  ->  C  <_  x )
46453ad2ant3 1084 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  A  <_  C  /\  C  <_  B
)  /\  ( x  e.  RR  /\  C  <_  x  /\  x  <_  B
) )  ->  C  <_  x )
4740, 41, 42, 44, 46letrd 10194 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  A  <_  C  /\  C  <_  B
)  /\  ( x  e.  RR  /\  C  <_  x  /\  x  <_  B
) )  ->  A  <_  x )
48473exp 1264 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( C  e.  RR  /\  A  <_  C  /\  C  <_  B
)  ->  ( (
x  e.  RR  /\  C  <_  x  /\  x  <_  B )  ->  A  <_  x ) ) )
4924, 48sylbid 230 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( C  e.  ( A [,] B )  ->  ( ( x  e.  RR  /\  C  <_  x  /\  x  <_  B )  ->  A  <_  x ) ) )
50493impia 1261 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  ( A [,] B
) )  ->  (
( x  e.  RR  /\  C  <_  x  /\  x  <_  B )  ->  A  <_  x ) )
51 simp3 1063 . . . . . . . 8  |-  ( ( x  e.  RR  /\  C  <_  x  /\  x  <_  B )  ->  x  <_  B )
5251a1i 11 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  ( A [,] B
) )  ->  (
( x  e.  RR  /\  C  <_  x  /\  x  <_  B )  ->  x  <_  B ) )
5339, 50, 523jcad 1243 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  ( A [,] B
) )  ->  (
( x  e.  RR  /\  C  <_  x  /\  x  <_  B )  -> 
( x  e.  RR  /\  A  <_  x  /\  x  <_  B ) ) )
5437, 53jaod 395 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  ( A [,] B
) )  ->  (
( ( x  e.  RR  /\  A  <_  x  /\  x  <_  C
)  \/  ( x  e.  RR  /\  C  <_  x  /\  x  <_  B ) )  -> 
( x  e.  RR  /\  A  <_  x  /\  x  <_  B ) ) )
5519, 54impbid 202 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  ( A [,] B
) )  ->  (
( x  e.  RR  /\  A  <_  x  /\  x  <_  B )  <->  ( (
x  e.  RR  /\  A  <_  x  /\  x  <_  C )  \/  (
x  e.  RR  /\  C  <_  x  /\  x  <_  B ) ) ) )
56 elicc2 12238 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( x  e.  ( A [,] B )  <-> 
( x  e.  RR  /\  A  <_  x  /\  x  <_  B ) ) )
57563adant3 1081 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  ( A [,] B
) )  ->  (
x  e.  ( A [,] B )  <->  ( x  e.  RR  /\  A  <_  x  /\  x  <_  B
) ) )
585imdistani 726 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  ( A [,] B ) )  ->  ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  RR ) )
59583impa 1259 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  ( A [,] B
) )  ->  (
( A  e.  RR  /\  B  e.  RR )  /\  C  e.  RR ) )
60 elicc2 12238 . . . . . . 7  |-  ( ( A  e.  RR  /\  C  e.  RR )  ->  ( x  e.  ( A [,] C )  <-> 
( x  e.  RR  /\  A  <_  x  /\  x  <_  C ) ) )
6160adantlr 751 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  RR )  ->  ( x  e.  ( A [,] C
)  <->  ( x  e.  RR  /\  A  <_  x  /\  x  <_  C
) ) )
62 elicc2 12238 . . . . . . . 8  |-  ( ( C  e.  RR  /\  B  e.  RR )  ->  ( x  e.  ( C [,] B )  <-> 
( x  e.  RR  /\  C  <_  x  /\  x  <_  B ) ) )
6362ancoms 469 . . . . . . 7  |-  ( ( B  e.  RR  /\  C  e.  RR )  ->  ( x  e.  ( C [,] B )  <-> 
( x  e.  RR  /\  C  <_  x  /\  x  <_  B ) ) )
6463adantll 750 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  RR )  ->  ( x  e.  ( C [,] B
)  <->  ( x  e.  RR  /\  C  <_  x  /\  x  <_  B
) ) )
6561, 64orbi12d 746 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  RR )  ->  ( ( x  e.  ( A [,] C )  \/  x  e.  ( C [,] B
) )  <->  ( (
x  e.  RR  /\  A  <_  x  /\  x  <_  C )  \/  (
x  e.  RR  /\  C  <_  x  /\  x  <_  B ) ) ) )
6659, 65syl 17 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  ( A [,] B
) )  ->  (
( x  e.  ( A [,] C )  \/  x  e.  ( C [,] B ) )  <->  ( ( x  e.  RR  /\  A  <_  x  /\  x  <_  C )  \/  (
x  e.  RR  /\  C  <_  x  /\  x  <_  B ) ) ) )
6755, 57, 663bitr4d 300 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  ( A [,] B
) )  ->  (
x  e.  ( A [,] B )  <->  ( x  e.  ( A [,] C
)  \/  x  e.  ( C [,] B
) ) ) )
68 elun 3753 . . 3  |-  ( x  e.  ( ( A [,] C )  u.  ( C [,] B
) )  <->  ( x  e.  ( A [,] C
)  \/  x  e.  ( C [,] B
) ) )
6967, 68syl6bbr 278 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  ( A [,] B
) )  ->  (
x  e.  ( A [,] B )  <->  x  e.  ( ( A [,] C )  u.  ( C [,] B ) ) ) )
7069eqrdv 2620 1  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  ( A [,] B
) )  ->  ( A [,] B )  =  ( ( A [,] C )  u.  ( C [,] B ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    u. cun 3572   class class class wbr 4653  (class class class)co 6650   RRcr 9935    < clt 10074    <_ cle 10075   [,]cicc 12178
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-pre-lttri 10010  ax-pre-lttrn 10011
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-icc 12182
This theorem is referenced by:  cnmpt2pc  22727  volcn  23374  itgspliticc  23603  cvmliftlem10  31276  iblspltprt  40189
  Copyright terms: Public domain W3C validator