| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > infdiffi | Structured version Visualization version Unicode version | ||
| Description: Removing a finite set from an infinite set does not change the cardinality of the set. (Contributed by Mario Carneiro, 30-Apr-2015.) |
| Ref | Expression |
|---|---|
| infdiffi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difeq2 3722 |
. . . . . 6
| |
| 2 | dif0 3950 |
. . . . . 6
| |
| 3 | 1, 2 | syl6eq 2672 |
. . . . 5
|
| 4 | 3 | breq1d 4663 |
. . . 4
|
| 5 | 4 | imbi2d 330 |
. . 3
|
| 6 | difeq2 3722 |
. . . . 5
| |
| 7 | 6 | breq1d 4663 |
. . . 4
|
| 8 | 7 | imbi2d 330 |
. . 3
|
| 9 | difeq2 3722 |
. . . . . 6
| |
| 10 | difun1 3887 |
. . . . . 6
| |
| 11 | 9, 10 | syl6eq 2672 |
. . . . 5
|
| 12 | 11 | breq1d 4663 |
. . . 4
|
| 13 | 12 | imbi2d 330 |
. . 3
|
| 14 | difeq2 3722 |
. . . . 5
| |
| 15 | 14 | breq1d 4663 |
. . . 4
|
| 16 | 15 | imbi2d 330 |
. . 3
|
| 17 | reldom 7961 |
. . . . 5
| |
| 18 | 17 | brrelex2i 5159 |
. . . 4
|
| 19 | enrefg 7987 |
. . . 4
| |
| 20 | 18, 19 | syl 17 |
. . 3
|
| 21 | domen2 8103 |
. . . . . . . . 9
| |
| 22 | 21 | biimparc 504 |
. . . . . . . 8
|
| 23 | infdifsn 8554 |
. . . . . . . 8
| |
| 24 | 22, 23 | syl 17 |
. . . . . . 7
|
| 25 | entr 8008 |
. . . . . . 7
| |
| 26 | 24, 25 | sylancom 701 |
. . . . . 6
|
| 27 | 26 | ex 450 |
. . . . 5
|
| 28 | 27 | a2i 14 |
. . . 4
|
| 29 | 28 | a1i 11 |
. . 3
|
| 30 | 5, 8, 13, 16, 20, 29 | findcard2 8200 |
. 2
|
| 31 | 30 | impcom 446 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-om 7066 df-1o 7560 df-er 7742 df-en 7956 df-dom 7957 df-fin 7959 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |