MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ioombl1lem1 Structured version   Visualization version   Unicode version

Theorem ioombl1lem1 23326
Description: Lemma for ioombl1 23330. (Contributed by Mario Carneiro, 18-Aug-2014.)
Hypotheses
Ref Expression
ioombl1.b  |-  B  =  ( A (,) +oo )
ioombl1.a  |-  ( ph  ->  A  e.  RR )
ioombl1.e  |-  ( ph  ->  E  C_  RR )
ioombl1.v  |-  ( ph  ->  ( vol* `  E )  e.  RR )
ioombl1.c  |-  ( ph  ->  C  e.  RR+ )
ioombl1.s  |-  S  =  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  F ) )
ioombl1.t  |-  T  =  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  G ) )
ioombl1.u  |-  U  =  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  H ) )
ioombl1.f1  |-  ( ph  ->  F : NN --> (  <_  i^i  ( RR  X.  RR ) ) )
ioombl1.f2  |-  ( ph  ->  E  C_  U. ran  ( (,)  o.  F ) )
ioombl1.f3  |-  ( ph  ->  sup ( ran  S ,  RR* ,  <  )  <_  ( ( vol* `  E )  +  C
) )
ioombl1.p  |-  P  =  ( 1st `  ( F `  n )
)
ioombl1.q  |-  Q  =  ( 2nd `  ( F `  n )
)
ioombl1.g  |-  G  =  ( n  e.  NN  |->  <. if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q ) ,  Q >. )
ioombl1.h  |-  H  =  ( n  e.  NN  |->  <. P ,  if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q
) >. )
Assertion
Ref Expression
ioombl1lem1  |-  ( ph  ->  ( G : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  H : NN --> (  <_  i^i  ( RR  X.  RR ) ) ) )
Distinct variable groups:    B, n    C, n    n, E    n, F    n, G    n, H    ph, n    S, n
Allowed substitution hints:    A( n)    P( n)    Q( n)    T( n)    U( n)

Proof of Theorem ioombl1lem1
StepHypRef Expression
1 ioombl1.a . . . . . . . 8  |-  ( ph  ->  A  e.  RR )
21adantr 481 . . . . . . 7  |-  ( (
ph  /\  n  e.  NN )  ->  A  e.  RR )
3 ioombl1.p . . . . . . . 8  |-  P  =  ( 1st `  ( F `  n )
)
4 ioombl1.f1 . . . . . . . . . 10  |-  ( ph  ->  F : NN --> (  <_  i^i  ( RR  X.  RR ) ) )
5 ovolfcl 23235 . . . . . . . . . 10  |-  ( ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  n  e.  NN )  ->  (
( 1st `  ( F `  n )
)  e.  RR  /\  ( 2nd `  ( F `
 n ) )  e.  RR  /\  ( 1st `  ( F `  n ) )  <_ 
( 2nd `  ( F `  n )
) ) )
64, 5sylan 488 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( 1st `  ( F `
 n ) )  e.  RR  /\  ( 2nd `  ( F `  n ) )  e.  RR  /\  ( 1st `  ( F `  n
) )  <_  ( 2nd `  ( F `  n ) ) ) )
76simp1d 1073 . . . . . . . 8  |-  ( (
ph  /\  n  e.  NN )  ->  ( 1st `  ( F `  n
) )  e.  RR )
83, 7syl5eqel 2705 . . . . . . 7  |-  ( (
ph  /\  n  e.  NN )  ->  P  e.  RR )
92, 8ifcld 4131 . . . . . 6  |-  ( (
ph  /\  n  e.  NN )  ->  if ( P  <_  A ,  A ,  P )  e.  RR )
10 ioombl1.q . . . . . . 7  |-  Q  =  ( 2nd `  ( F `  n )
)
116simp2d 1074 . . . . . . 7  |-  ( (
ph  /\  n  e.  NN )  ->  ( 2nd `  ( F `  n
) )  e.  RR )
1210, 11syl5eqel 2705 . . . . . 6  |-  ( (
ph  /\  n  e.  NN )  ->  Q  e.  RR )
13 min2 12021 . . . . . 6  |-  ( ( if ( P  <_  A ,  A ,  P )  e.  RR  /\  Q  e.  RR )  ->  if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q )  <_  Q
)
149, 12, 13syl2anc 693 . . . . 5  |-  ( (
ph  /\  n  e.  NN )  ->  if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q
)  <_  Q )
15 df-br 4654 . . . . 5  |-  ( if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q
)  <_  Q  <->  <. if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q
) ,  Q >.  e. 
<_  )
1614, 15sylib 208 . . . 4  |-  ( (
ph  /\  n  e.  NN )  ->  <. if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q
) ,  Q >.  e. 
<_  )
179, 12ifcld 4131 . . . . 5  |-  ( (
ph  /\  n  e.  NN )  ->  if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q
)  e.  RR )
18 opelxpi 5148 . . . . 5  |-  ( ( if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q )  e.  RR  /\  Q  e.  RR )  ->  <. if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q ) ,  Q >.  e.  ( RR  X.  RR ) )
1917, 12, 18syl2anc 693 . . . 4  |-  ( (
ph  /\  n  e.  NN )  ->  <. if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q
) ,  Q >.  e.  ( RR  X.  RR ) )
2016, 19elind 3798 . . 3  |-  ( (
ph  /\  n  e.  NN )  ->  <. if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q
) ,  Q >.  e.  (  <_  i^i  ( RR  X.  RR ) ) )
21 ioombl1.g . . 3  |-  G  =  ( n  e.  NN  |->  <. if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q ) ,  Q >. )
2220, 21fmptd 6385 . 2  |-  ( ph  ->  G : NN --> (  <_  i^i  ( RR  X.  RR ) ) )
23 max1 12016 . . . . . . 7  |-  ( ( P  e.  RR  /\  A  e.  RR )  ->  P  <_  if ( P  <_  A ,  A ,  P ) )
248, 2, 23syl2anc 693 . . . . . 6  |-  ( (
ph  /\  n  e.  NN )  ->  P  <_  if ( P  <_  A ,  A ,  P ) )
256simp3d 1075 . . . . . . 7  |-  ( (
ph  /\  n  e.  NN )  ->  ( 1st `  ( F `  n
) )  <_  ( 2nd `  ( F `  n ) ) )
2625, 3, 103brtr4g 4687 . . . . . 6  |-  ( (
ph  /\  n  e.  NN )  ->  P  <_  Q )
27 breq2 4657 . . . . . . 7  |-  ( if ( P  <_  A ,  A ,  P )  =  if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q )  ->  ( P  <_  if ( P  <_  A ,  A ,  P )  <->  P  <_  if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q
) ) )
28 breq2 4657 . . . . . . 7  |-  ( Q  =  if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q )  ->  ( P  <_  Q  <->  P  <_  if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q
) ) )
2927, 28ifboth 4124 . . . . . 6  |-  ( ( P  <_  if ( P  <_  A ,  A ,  P )  /\  P  <_  Q )  ->  P  <_  if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q ) )
3024, 26, 29syl2anc 693 . . . . 5  |-  ( (
ph  /\  n  e.  NN )  ->  P  <_  if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q
) )
31 df-br 4654 . . . . 5  |-  ( P  <_  if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q )  <->  <. P ,  if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q
) >.  e.  <_  )
3230, 31sylib 208 . . . 4  |-  ( (
ph  /\  n  e.  NN )  ->  <. P ,  if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q
) >.  e.  <_  )
33 opelxpi 5148 . . . . 5  |-  ( ( P  e.  RR  /\  if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q
)  e.  RR )  ->  <. P ,  if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q
) >.  e.  ( RR 
X.  RR ) )
348, 17, 33syl2anc 693 . . . 4  |-  ( (
ph  /\  n  e.  NN )  ->  <. P ,  if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q
) >.  e.  ( RR 
X.  RR ) )
3532, 34elind 3798 . . 3  |-  ( (
ph  /\  n  e.  NN )  ->  <. P ,  if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q
) >.  e.  (  <_  i^i  ( RR  X.  RR ) ) )
36 ioombl1.h . . 3  |-  H  =  ( n  e.  NN  |->  <. P ,  if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q
) >. )
3735, 36fmptd 6385 . 2  |-  ( ph  ->  H : NN --> (  <_  i^i  ( RR  X.  RR ) ) )
3822, 37jca 554 1  |-  ( ph  ->  ( G : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  H : NN --> (  <_  i^i  ( RR  X.  RR ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    i^i cin 3573    C_ wss 3574   ifcif 4086   <.cop 4183   U.cuni 4436   class class class wbr 4653    |-> cmpt 4729    X. cxp 5112   ran crn 5115    o. ccom 5118   -->wf 5884   ` cfv 5888  (class class class)co 6650   1stc1st 7166   2ndc2nd 7167   supcsup 8346   RRcr 9935   1c1 9937    + caddc 9939   +oocpnf 10071   RR*cxr 10073    < clt 10074    <_ cle 10075    - cmin 10266   NNcn 11020   RR+crp 11832   (,)cioo 12175    seqcseq 12801   abscabs 13974   vol*covol 23231
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-pre-lttri 10010  ax-pre-lttrn 10011
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-1st 7168  df-2nd 7169  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080
This theorem is referenced by:  ioombl1lem3  23328  ioombl1lem4  23329
  Copyright terms: Public domain W3C validator