MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ioombl1lem4 Structured version   Visualization version   Unicode version

Theorem ioombl1lem4 23329
Description: Lemma for ioombl1 23330. (Contributed by Mario Carneiro, 16-Jun-2014.)
Hypotheses
Ref Expression
ioombl1.b  |-  B  =  ( A (,) +oo )
ioombl1.a  |-  ( ph  ->  A  e.  RR )
ioombl1.e  |-  ( ph  ->  E  C_  RR )
ioombl1.v  |-  ( ph  ->  ( vol* `  E )  e.  RR )
ioombl1.c  |-  ( ph  ->  C  e.  RR+ )
ioombl1.s  |-  S  =  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  F ) )
ioombl1.t  |-  T  =  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  G ) )
ioombl1.u  |-  U  =  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  H ) )
ioombl1.f1  |-  ( ph  ->  F : NN --> (  <_  i^i  ( RR  X.  RR ) ) )
ioombl1.f2  |-  ( ph  ->  E  C_  U. ran  ( (,)  o.  F ) )
ioombl1.f3  |-  ( ph  ->  sup ( ran  S ,  RR* ,  <  )  <_  ( ( vol* `  E )  +  C
) )
ioombl1.p  |-  P  =  ( 1st `  ( F `  n )
)
ioombl1.q  |-  Q  =  ( 2nd `  ( F `  n )
)
ioombl1.g  |-  G  =  ( n  e.  NN  |->  <. if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q ) ,  Q >. )
ioombl1.h  |-  H  =  ( n  e.  NN  |->  <. P ,  if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q
) >. )
Assertion
Ref Expression
ioombl1lem4  |-  ( ph  ->  ( ( vol* `  ( E  i^i  B
) )  +  ( vol* `  ( E  \  B ) ) )  <_  ( ( vol* `  E )  +  C ) )
Distinct variable groups:    B, n    C, n    n, E    n, F    n, G    n, H    ph, n    S, n
Allowed substitution hints:    A( n)    P( n)    Q( n)    T( n)    U( n)

Proof of Theorem ioombl1lem4
Dummy variables  x  j  k  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inss1 3833 . . . . 5  |-  ( E  i^i  B )  C_  E
21a1i 11 . . . 4  |-  ( ph  ->  ( E  i^i  B
)  C_  E )
3 ioombl1.e . . . 4  |-  ( ph  ->  E  C_  RR )
4 ioombl1.v . . . 4  |-  ( ph  ->  ( vol* `  E )  e.  RR )
5 ovolsscl 23254 . . . 4  |-  ( ( ( E  i^i  B
)  C_  E  /\  E  C_  RR  /\  ( vol* `  E )  e.  RR )  -> 
( vol* `  ( E  i^i  B ) )  e.  RR )
62, 3, 4, 5syl3anc 1326 . . 3  |-  ( ph  ->  ( vol* `  ( E  i^i  B ) )  e.  RR )
7 difss 3737 . . . . 5  |-  ( E 
\  B )  C_  E
87a1i 11 . . . 4  |-  ( ph  ->  ( E  \  B
)  C_  E )
9 ovolsscl 23254 . . . 4  |-  ( ( ( E  \  B
)  C_  E  /\  E  C_  RR  /\  ( vol* `  E )  e.  RR )  -> 
( vol* `  ( E  \  B ) )  e.  RR )
108, 3, 4, 9syl3anc 1326 . . 3  |-  ( ph  ->  ( vol* `  ( E  \  B ) )  e.  RR )
116, 10readdcld 10069 . 2  |-  ( ph  ->  ( ( vol* `  ( E  i^i  B
) )  +  ( vol* `  ( E  \  B ) ) )  e.  RR )
12 ioombl1.b . . 3  |-  B  =  ( A (,) +oo )
13 ioombl1.a . . 3  |-  ( ph  ->  A  e.  RR )
14 ioombl1.c . . 3  |-  ( ph  ->  C  e.  RR+ )
15 ioombl1.s . . 3  |-  S  =  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  F ) )
16 ioombl1.t . . 3  |-  T  =  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  G ) )
17 ioombl1.u . . 3  |-  U  =  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  H ) )
18 ioombl1.f1 . . 3  |-  ( ph  ->  F : NN --> (  <_  i^i  ( RR  X.  RR ) ) )
19 ioombl1.f2 . . 3  |-  ( ph  ->  E  C_  U. ran  ( (,)  o.  F ) )
20 ioombl1.f3 . . 3  |-  ( ph  ->  sup ( ran  S ,  RR* ,  <  )  <_  ( ( vol* `  E )  +  C
) )
21 ioombl1.p . . 3  |-  P  =  ( 1st `  ( F `  n )
)
22 ioombl1.q . . 3  |-  Q  =  ( 2nd `  ( F `  n )
)
23 ioombl1.g . . 3  |-  G  =  ( n  e.  NN  |->  <. if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q ) ,  Q >. )
24 ioombl1.h . . 3  |-  H  =  ( n  e.  NN  |->  <. P ,  if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q
) >. )
2512, 13, 3, 4, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24ioombl1lem2 23327 . 2  |-  ( ph  ->  sup ( ran  S ,  RR* ,  <  )  e.  RR )
2614rpred 11872 . . 3  |-  ( ph  ->  C  e.  RR )
274, 26readdcld 10069 . 2  |-  ( ph  ->  ( ( vol* `  E )  +  C
)  e.  RR )
2812, 13, 3, 4, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24ioombl1lem1 23326 . . . . . . . . 9  |-  ( ph  ->  ( G : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  H : NN --> (  <_  i^i  ( RR  X.  RR ) ) ) )
2928simpld 475 . . . . . . . 8  |-  ( ph  ->  G : NN --> (  <_  i^i  ( RR  X.  RR ) ) )
30 eqid 2622 . . . . . . . . 9  |-  ( ( abs  o.  -  )  o.  G )  =  ( ( abs  o.  -  )  o.  G )
3130, 16ovolsf 23241 . . . . . . . 8  |-  ( G : NN --> (  <_  i^i  ( RR  X.  RR ) )  ->  T : NN --> ( 0 [,) +oo ) )
3229, 31syl 17 . . . . . . 7  |-  ( ph  ->  T : NN --> ( 0 [,) +oo ) )
33 frn 6053 . . . . . . 7  |-  ( T : NN --> ( 0 [,) +oo )  ->  ran  T  C_  ( 0 [,) +oo ) )
3432, 33syl 17 . . . . . 6  |-  ( ph  ->  ran  T  C_  (
0 [,) +oo )
)
35 rge0ssre 12280 . . . . . 6  |-  ( 0 [,) +oo )  C_  RR
3634, 35syl6ss 3615 . . . . 5  |-  ( ph  ->  ran  T  C_  RR )
37 1nn 11031 . . . . . . . 8  |-  1  e.  NN
38 fdm 6051 . . . . . . . . 9  |-  ( T : NN --> ( 0 [,) +oo )  ->  dom  T  =  NN )
3932, 38syl 17 . . . . . . . 8  |-  ( ph  ->  dom  T  =  NN )
4037, 39syl5eleqr 2708 . . . . . . 7  |-  ( ph  ->  1  e.  dom  T
)
41 ne0i 3921 . . . . . . 7  |-  ( 1  e.  dom  T  ->  dom  T  =/=  (/) )
4240, 41syl 17 . . . . . 6  |-  ( ph  ->  dom  T  =/=  (/) )
43 dm0rn0 5342 . . . . . . 7  |-  ( dom 
T  =  (/)  <->  ran  T  =  (/) )
4443necon3bii 2846 . . . . . 6  |-  ( dom 
T  =/=  (/)  <->  ran  T  =/=  (/) )
4542, 44sylib 208 . . . . 5  |-  ( ph  ->  ran  T  =/=  (/) )
4632ffvelrnda 6359 . . . . . . . . . 10  |-  ( (
ph  /\  j  e.  NN )  ->  ( T `
 j )  e.  ( 0 [,) +oo ) )
4735, 46sseldi 3601 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  NN )  ->  ( T `
 j )  e.  RR )
48 eqid 2622 . . . . . . . . . . . . 13  |-  ( ( abs  o.  -  )  o.  F )  =  ( ( abs  o.  -  )  o.  F )
4948, 15ovolsf 23241 . . . . . . . . . . . 12  |-  ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  ->  S : NN --> ( 0 [,) +oo ) )
5018, 49syl 17 . . . . . . . . . . 11  |-  ( ph  ->  S : NN --> ( 0 [,) +oo ) )
5150ffvelrnda 6359 . . . . . . . . . 10  |-  ( (
ph  /\  j  e.  NN )  ->  ( S `
 j )  e.  ( 0 [,) +oo ) )
5235, 51sseldi 3601 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  NN )  ->  ( S `
 j )  e.  RR )
5325adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  NN )  ->  sup ( ran  S ,  RR* ,  <  )  e.  RR )
54 simpr 477 . . . . . . . . . . . 12  |-  ( (
ph  /\  j  e.  NN )  ->  j  e.  NN )
55 nnuz 11723 . . . . . . . . . . . 12  |-  NN  =  ( ZZ>= `  1 )
5654, 55syl6eleq 2711 . . . . . . . . . . 11  |-  ( (
ph  /\  j  e.  NN )  ->  j  e.  ( ZZ>= `  1 )
)
57 simpl 473 . . . . . . . . . . . 12  |-  ( (
ph  /\  j  e.  NN )  ->  ph )
58 elfznn 12370 . . . . . . . . . . . 12  |-  ( n  e.  ( 1 ... j )  ->  n  e.  NN )
5930ovolfsf 23240 . . . . . . . . . . . . . . 15  |-  ( G : NN --> (  <_  i^i  ( RR  X.  RR ) )  ->  (
( abs  o.  -  )  o.  G ) : NN --> ( 0 [,) +oo ) )
6029, 59syl 17 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( abs  o.  -  )  o.  G
) : NN --> ( 0 [,) +oo ) )
6160ffvelrnda 6359 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( ( abs  o.  -  )  o.  G ) `  n )  e.  ( 0 [,) +oo )
)
6235, 61sseldi 3601 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( ( abs  o.  -  )  o.  G ) `  n )  e.  RR )
6357, 58, 62syl2an 494 . . . . . . . . . . 11  |-  ( ( ( ph  /\  j  e.  NN )  /\  n  e.  ( 1 ... j
) )  ->  (
( ( abs  o.  -  )  o.  G
) `  n )  e.  RR )
6448ovolfsf 23240 . . . . . . . . . . . . . . . 16  |-  ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  ->  (
( abs  o.  -  )  o.  F ) : NN --> ( 0 [,) +oo ) )
6518, 64syl 17 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( abs  o.  -  )  o.  F
) : NN --> ( 0 [,) +oo ) )
6665ffvelrnda 6359 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( ( abs  o.  -  )  o.  F ) `  n )  e.  ( 0 [,) +oo )
)
67 elrege0 12278 . . . . . . . . . . . . . 14  |-  ( ( ( ( abs  o.  -  )  o.  F
) `  n )  e.  ( 0 [,) +oo ) 
<->  ( ( ( ( abs  o.  -  )  o.  F ) `  n
)  e.  RR  /\  0  <_  ( ( ( abs  o.  -  )  o.  F ) `  n
) ) )
6866, 67sylib 208 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( ( ( abs  o.  -  )  o.  F
) `  n )  e.  RR  /\  0  <_ 
( ( ( abs 
o.  -  )  o.  F ) `  n
) ) )
6968simpld 475 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( ( abs  o.  -  )  o.  F ) `  n )  e.  RR )
7057, 58, 69syl2an 494 . . . . . . . . . . 11  |-  ( ( ( ph  /\  j  e.  NN )  /\  n  e.  ( 1 ... j
) )  ->  (
( ( abs  o.  -  )  o.  F
) `  n )  e.  RR )
7128simprd 479 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  H : NN --> (  <_  i^i  ( RR  X.  RR ) ) )
72 eqid 2622 . . . . . . . . . . . . . . . . . . 19  |-  ( ( abs  o.  -  )  o.  H )  =  ( ( abs  o.  -  )  o.  H )
7372ovolfsf 23240 . . . . . . . . . . . . . . . . . 18  |-  ( H : NN --> (  <_  i^i  ( RR  X.  RR ) )  ->  (
( abs  o.  -  )  o.  H ) : NN --> ( 0 [,) +oo ) )
7471, 73syl 17 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( abs  o.  -  )  o.  H
) : NN --> ( 0 [,) +oo ) )
7574ffvelrnda 6359 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( ( abs  o.  -  )  o.  H ) `  n )  e.  ( 0 [,) +oo )
)
76 elrege0 12278 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( abs  o.  -  )  o.  H
) `  n )  e.  ( 0 [,) +oo ) 
<->  ( ( ( ( abs  o.  -  )  o.  H ) `  n
)  e.  RR  /\  0  <_  ( ( ( abs  o.  -  )  o.  H ) `  n
) ) )
7775, 76sylib 208 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( ( ( abs  o.  -  )  o.  H
) `  n )  e.  RR  /\  0  <_ 
( ( ( abs 
o.  -  )  o.  H ) `  n
) ) )
7877simprd 479 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  n  e.  NN )  ->  0  <_ 
( ( ( abs 
o.  -  )  o.  H ) `  n
) )
7977simpld 475 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( ( abs  o.  -  )  o.  H ) `  n )  e.  RR )
8062, 79addge01d 10615 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  n  e.  NN )  ->  ( 0  <_  ( ( ( abs  o.  -  )  o.  H ) `  n
)  <->  ( ( ( abs  o.  -  )  o.  G ) `  n
)  <_  ( (
( ( abs  o.  -  )  o.  G
) `  n )  +  ( ( ( abs  o.  -  )  o.  H ) `  n
) ) ) )
8178, 80mpbid 222 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( ( abs  o.  -  )  o.  G ) `  n )  <_  (
( ( ( abs 
o.  -  )  o.  G ) `  n
)  +  ( ( ( abs  o.  -  )  o.  H ) `  n ) ) )
8212, 13, 3, 4, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24ioombl1lem3 23328 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( ( ( abs  o.  -  )  o.  G
) `  n )  +  ( ( ( abs  o.  -  )  o.  H ) `  n
) )  =  ( ( ( abs  o.  -  )  o.  F
) `  n )
)
8381, 82breqtrd 4679 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( ( abs  o.  -  )  o.  G ) `  n )  <_  (
( ( abs  o.  -  )  o.  F
) `  n )
)
8457, 58, 83syl2an 494 . . . . . . . . . . 11  |-  ( ( ( ph  /\  j  e.  NN )  /\  n  e.  ( 1 ... j
) )  ->  (
( ( abs  o.  -  )  o.  G
) `  n )  <_  ( ( ( abs 
o.  -  )  o.  F ) `  n
) )
8556, 63, 70, 84serle 12856 . . . . . . . . . 10  |-  ( (
ph  /\  j  e.  NN )  ->  (  seq 1 (  +  , 
( ( abs  o.  -  )  o.  G
) ) `  j
)  <_  (  seq 1 (  +  , 
( ( abs  o.  -  )  o.  F
) ) `  j
) )
8616fveq1i 6192 . . . . . . . . . 10  |-  ( T `
 j )  =  (  seq 1 (  +  ,  ( ( abs  o.  -  )  o.  G ) ) `  j )
8715fveq1i 6192 . . . . . . . . . 10  |-  ( S `
 j )  =  (  seq 1 (  +  ,  ( ( abs  o.  -  )  o.  F ) ) `  j )
8885, 86, 873brtr4g 4687 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  NN )  ->  ( T `
 j )  <_ 
( S `  j
) )
89 1zzd 11408 . . . . . . . . . . . . . . 15  |-  ( ph  ->  1  e.  ZZ )
90 eqidd 2623 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( ( abs  o.  -  )  o.  F ) `  n )  =  ( ( ( abs  o.  -  )  o.  F
) `  n )
)
9168simprd 479 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  n  e.  NN )  ->  0  <_ 
( ( ( abs 
o.  -  )  o.  F ) `  n
) )
92 frn 6053 . . . . . . . . . . . . . . . . . . . . 21  |-  ( S : NN --> ( 0 [,) +oo )  ->  ran  S  C_  ( 0 [,) +oo ) )
9350, 92syl 17 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ran  S  C_  (
0 [,) +oo )
)
94 icossxr 12258 . . . . . . . . . . . . . . . . . . . 20  |-  ( 0 [,) +oo )  C_  RR*
9593, 94syl6ss 3615 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ran  S  C_  RR* )
9695adantr 481 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  k  e.  NN )  ->  ran  S  C_ 
RR* )
97 ffn 6045 . . . . . . . . . . . . . . . . . . . 20  |-  ( S : NN --> ( 0 [,) +oo )  ->  S  Fn  NN )
9850, 97syl 17 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  S  Fn  NN )
99 fnfvelrn 6356 . . . . . . . . . . . . . . . . . . 19  |-  ( ( S  Fn  NN  /\  k  e.  NN )  ->  ( S `  k
)  e.  ran  S
)
10098, 99sylan 488 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  k  e.  NN )  ->  ( S `
 k )  e. 
ran  S )
101 supxrub 12154 . . . . . . . . . . . . . . . . . 18  |-  ( ( ran  S  C_  RR*  /\  ( S `  k )  e.  ran  S )  -> 
( S `  k
)  <_  sup ( ran  S ,  RR* ,  <  ) )
10296, 100, 101syl2anc 693 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  k  e.  NN )  ->  ( S `
 k )  <_  sup ( ran  S ,  RR* ,  <  ) )
103102ralrimiva 2966 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  A. k  e.  NN  ( S `  k )  <_  sup ( ran  S ,  RR* ,  <  )
)
104 breq2 4657 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  sup ( ran 
S ,  RR* ,  <  )  ->  ( ( S `
 k )  <_  x 
<->  ( S `  k
)  <_  sup ( ran  S ,  RR* ,  <  ) ) )
105104ralbidv 2986 . . . . . . . . . . . . . . . . 17  |-  ( x  =  sup ( ran 
S ,  RR* ,  <  )  ->  ( A. k  e.  NN  ( S `  k )  <_  x  <->  A. k  e.  NN  ( S `  k )  <_  sup ( ran  S ,  RR* ,  <  )
) )
106105rspcev 3309 . . . . . . . . . . . . . . . 16  |-  ( ( sup ( ran  S ,  RR* ,  <  )  e.  RR  /\  A. k  e.  NN  ( S `  k )  <_  sup ( ran  S ,  RR* ,  <  ) )  ->  E. x  e.  RR  A. k  e.  NN  ( S `  k )  <_  x )
10725, 103, 106syl2anc 693 . . . . . . . . . . . . . . 15  |-  ( ph  ->  E. x  e.  RR  A. k  e.  NN  ( S `  k )  <_  x )
10855, 15, 89, 90, 69, 91, 107isumsup2 14578 . . . . . . . . . . . . . 14  |-  ( ph  ->  S  ~~>  sup ( ran  S ,  RR ,  <  )
)
10993, 35syl6ss 3615 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ran  S  C_  RR )
110 fdm 6051 . . . . . . . . . . . . . . . . . . 19  |-  ( S : NN --> ( 0 [,) +oo )  ->  dom  S  =  NN )
11150, 110syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  dom  S  =  NN )
11237, 111syl5eleqr 2708 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  1  e.  dom  S
)
113 ne0i 3921 . . . . . . . . . . . . . . . . 17  |-  ( 1  e.  dom  S  ->  dom  S  =/=  (/) )
114112, 113syl 17 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  dom  S  =/=  (/) )
115 dm0rn0 5342 . . . . . . . . . . . . . . . . 17  |-  ( dom 
S  =  (/)  <->  ran  S  =  (/) )
116115necon3bii 2846 . . . . . . . . . . . . . . . 16  |-  ( dom 
S  =/=  (/)  <->  ran  S  =/=  (/) )
117114, 116sylib 208 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ran  S  =/=  (/) )
118 breq1 4656 . . . . . . . . . . . . . . . . . . 19  |-  ( z  =  ( S `  k )  ->  (
z  <_  x  <->  ( S `  k )  <_  x
) )
119118ralrn 6362 . . . . . . . . . . . . . . . . . 18  |-  ( S  Fn  NN  ->  ( A. z  e.  ran  S  z  <_  x  <->  A. k  e.  NN  ( S `  k )  <_  x
) )
12098, 119syl 17 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( A. z  e. 
ran  S  z  <_  x  <->  A. k  e.  NN  ( S `  k )  <_  x ) )
121120rexbidv 3052 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( E. x  e.  RR  A. z  e. 
ran  S  z  <_  x  <->  E. x  e.  RR  A. k  e.  NN  ( S `  k )  <_  x ) )
122107, 121mpbird 247 . . . . . . . . . . . . . . 15  |-  ( ph  ->  E. x  e.  RR  A. z  e.  ran  S  z  <_  x )
123 supxrre 12157 . . . . . . . . . . . . . . 15  |-  ( ( ran  S  C_  RR  /\ 
ran  S  =/=  (/)  /\  E. x  e.  RR  A. z  e.  ran  S  z  <_  x )  ->  sup ( ran  S ,  RR* ,  <  )  =  sup ( ran  S ,  RR ,  <  ) )
124109, 117, 122, 123syl3anc 1326 . . . . . . . . . . . . . 14  |-  ( ph  ->  sup ( ran  S ,  RR* ,  <  )  =  sup ( ran  S ,  RR ,  <  )
)
125108, 124breqtrrd 4681 . . . . . . . . . . . . 13  |-  ( ph  ->  S  ~~>  sup ( ran  S ,  RR* ,  <  )
)
126125adantr 481 . . . . . . . . . . . 12  |-  ( (
ph  /\  j  e.  NN )  ->  S  ~~>  sup ( ran  S ,  RR* ,  <  ) )
12715, 126syl5eqbrr 4689 . . . . . . . . . . 11  |-  ( (
ph  /\  j  e.  NN )  ->  seq 1
(  +  ,  ( ( abs  o.  -  )  o.  F )
)  ~~>  sup ( ran  S ,  RR* ,  <  )
)
12869adantlr 751 . . . . . . . . . . 11  |-  ( ( ( ph  /\  j  e.  NN )  /\  n  e.  NN )  ->  (
( ( abs  o.  -  )  o.  F
) `  n )  e.  RR )
12991adantlr 751 . . . . . . . . . . 11  |-  ( ( ( ph  /\  j  e.  NN )  /\  n  e.  NN )  ->  0  <_  ( ( ( abs 
o.  -  )  o.  F ) `  n
) )
13055, 54, 127, 128, 129climserle 14393 . . . . . . . . . 10  |-  ( (
ph  /\  j  e.  NN )  ->  (  seq 1 (  +  , 
( ( abs  o.  -  )  o.  F
) ) `  j
)  <_  sup ( ran  S ,  RR* ,  <  ) )
13187, 130syl5eqbr 4688 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  NN )  ->  ( S `
 j )  <_  sup ( ran  S ,  RR* ,  <  ) )
13247, 52, 53, 88, 131letrd 10194 . . . . . . . 8  |-  ( (
ph  /\  j  e.  NN )  ->  ( T `
 j )  <_  sup ( ran  S ,  RR* ,  <  ) )
133132ralrimiva 2966 . . . . . . 7  |-  ( ph  ->  A. j  e.  NN  ( T `  j )  <_  sup ( ran  S ,  RR* ,  <  )
)
134 breq2 4657 . . . . . . . . 9  |-  ( x  =  sup ( ran 
S ,  RR* ,  <  )  ->  ( ( T `
 j )  <_  x 
<->  ( T `  j
)  <_  sup ( ran  S ,  RR* ,  <  ) ) )
135134ralbidv 2986 . . . . . . . 8  |-  ( x  =  sup ( ran 
S ,  RR* ,  <  )  ->  ( A. j  e.  NN  ( T `  j )  <_  x  <->  A. j  e.  NN  ( T `  j )  <_  sup ( ran  S ,  RR* ,  <  )
) )
136135rspcev 3309 . . . . . . 7  |-  ( ( sup ( ran  S ,  RR* ,  <  )  e.  RR  /\  A. j  e.  NN  ( T `  j )  <_  sup ( ran  S ,  RR* ,  <  ) )  ->  E. x  e.  RR  A. j  e.  NN  ( T `  j )  <_  x )
13725, 133, 136syl2anc 693 . . . . . 6  |-  ( ph  ->  E. x  e.  RR  A. j  e.  NN  ( T `  j )  <_  x )
138 ffn 6045 . . . . . . . . 9  |-  ( T : NN --> ( 0 [,) +oo )  ->  T  Fn  NN )
13932, 138syl 17 . . . . . . . 8  |-  ( ph  ->  T  Fn  NN )
140 breq1 4656 . . . . . . . . 9  |-  ( z  =  ( T `  j )  ->  (
z  <_  x  <->  ( T `  j )  <_  x
) )
141140ralrn 6362 . . . . . . . 8  |-  ( T  Fn  NN  ->  ( A. z  e.  ran  T  z  <_  x  <->  A. j  e.  NN  ( T `  j )  <_  x
) )
142139, 141syl 17 . . . . . . 7  |-  ( ph  ->  ( A. z  e. 
ran  T  z  <_  x  <->  A. j  e.  NN  ( T `  j )  <_  x ) )
143142rexbidv 3052 . . . . . 6  |-  ( ph  ->  ( E. x  e.  RR  A. z  e. 
ran  T  z  <_  x  <->  E. x  e.  RR  A. j  e.  NN  ( T `  j )  <_  x ) )
144137, 143mpbird 247 . . . . 5  |-  ( ph  ->  E. x  e.  RR  A. z  e.  ran  T  z  <_  x )
145 suprcl 10983 . . . . 5  |-  ( ( ran  T  C_  RR  /\ 
ran  T  =/=  (/)  /\  E. x  e.  RR  A. z  e.  ran  T  z  <_  x )  ->  sup ( ran  T ,  RR ,  <  )  e.  RR )
14636, 45, 144, 145syl3anc 1326 . . . 4  |-  ( ph  ->  sup ( ran  T ,  RR ,  <  )  e.  RR )
14772, 17ovolsf 23241 . . . . . . . 8  |-  ( H : NN --> (  <_  i^i  ( RR  X.  RR ) )  ->  U : NN --> ( 0 [,) +oo ) )
14871, 147syl 17 . . . . . . 7  |-  ( ph  ->  U : NN --> ( 0 [,) +oo ) )
149 frn 6053 . . . . . . 7  |-  ( U : NN --> ( 0 [,) +oo )  ->  ran  U  C_  ( 0 [,) +oo ) )
150148, 149syl 17 . . . . . 6  |-  ( ph  ->  ran  U  C_  (
0 [,) +oo )
)
151150, 35syl6ss 3615 . . . . 5  |-  ( ph  ->  ran  U  C_  RR )
152 fdm 6051 . . . . . . . . 9  |-  ( U : NN --> ( 0 [,) +oo )  ->  dom  U  =  NN )
153148, 152syl 17 . . . . . . . 8  |-  ( ph  ->  dom  U  =  NN )
15437, 153syl5eleqr 2708 . . . . . . 7  |-  ( ph  ->  1  e.  dom  U
)
155 ne0i 3921 . . . . . . 7  |-  ( 1  e.  dom  U  ->  dom  U  =/=  (/) )
156154, 155syl 17 . . . . . 6  |-  ( ph  ->  dom  U  =/=  (/) )
157 dm0rn0 5342 . . . . . . 7  |-  ( dom 
U  =  (/)  <->  ran  U  =  (/) )
158157necon3bii 2846 . . . . . 6  |-  ( dom 
U  =/=  (/)  <->  ran  U  =/=  (/) )
159156, 158sylib 208 . . . . 5  |-  ( ph  ->  ran  U  =/=  (/) )
160148ffvelrnda 6359 . . . . . . . . . 10  |-  ( (
ph  /\  j  e.  NN )  ->  ( U `
 j )  e.  ( 0 [,) +oo ) )
16135, 160sseldi 3601 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  NN )  ->  ( U `
 j )  e.  RR )
16257, 58, 79syl2an 494 . . . . . . . . . . 11  |-  ( ( ( ph  /\  j  e.  NN )  /\  n  e.  ( 1 ... j
) )  ->  (
( ( abs  o.  -  )  o.  H
) `  n )  e.  RR )
163 elrege0 12278 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( abs  o.  -  )  o.  G
) `  n )  e.  ( 0 [,) +oo ) 
<->  ( ( ( ( abs  o.  -  )  o.  G ) `  n
)  e.  RR  /\  0  <_  ( ( ( abs  o.  -  )  o.  G ) `  n
) ) )
16461, 163sylib 208 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( ( ( abs  o.  -  )  o.  G
) `  n )  e.  RR  /\  0  <_ 
( ( ( abs 
o.  -  )  o.  G ) `  n
) ) )
165164simprd 479 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  n  e.  NN )  ->  0  <_ 
( ( ( abs 
o.  -  )  o.  G ) `  n
) )
16679, 62addge02d 10616 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  n  e.  NN )  ->  ( 0  <_  ( ( ( abs  o.  -  )  o.  G ) `  n
)  <->  ( ( ( abs  o.  -  )  o.  H ) `  n
)  <_  ( (
( ( abs  o.  -  )  o.  G
) `  n )  +  ( ( ( abs  o.  -  )  o.  H ) `  n
) ) ) )
167165, 166mpbid 222 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( ( abs  o.  -  )  o.  H ) `  n )  <_  (
( ( ( abs 
o.  -  )  o.  G ) `  n
)  +  ( ( ( abs  o.  -  )  o.  H ) `  n ) ) )
168167, 82breqtrd 4679 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( ( abs  o.  -  )  o.  H ) `  n )  <_  (
( ( abs  o.  -  )  o.  F
) `  n )
)
16957, 58, 168syl2an 494 . . . . . . . . . . 11  |-  ( ( ( ph  /\  j  e.  NN )  /\  n  e.  ( 1 ... j
) )  ->  (
( ( abs  o.  -  )  o.  H
) `  n )  <_  ( ( ( abs 
o.  -  )  o.  F ) `  n
) )
17056, 162, 70, 169serle 12856 . . . . . . . . . 10  |-  ( (
ph  /\  j  e.  NN )  ->  (  seq 1 (  +  , 
( ( abs  o.  -  )  o.  H
) ) `  j
)  <_  (  seq 1 (  +  , 
( ( abs  o.  -  )  o.  F
) ) `  j
) )
17117fveq1i 6192 . . . . . . . . . 10  |-  ( U `
 j )  =  (  seq 1 (  +  ,  ( ( abs  o.  -  )  o.  H ) ) `  j )
172170, 171, 873brtr4g 4687 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  NN )  ->  ( U `
 j )  <_ 
( S `  j
) )
173161, 52, 53, 172, 131letrd 10194 . . . . . . . 8  |-  ( (
ph  /\  j  e.  NN )  ->  ( U `
 j )  <_  sup ( ran  S ,  RR* ,  <  ) )
174173ralrimiva 2966 . . . . . . 7  |-  ( ph  ->  A. j  e.  NN  ( U `  j )  <_  sup ( ran  S ,  RR* ,  <  )
)
175 breq2 4657 . . . . . . . . 9  |-  ( x  =  sup ( ran 
S ,  RR* ,  <  )  ->  ( ( U `
 j )  <_  x 
<->  ( U `  j
)  <_  sup ( ran  S ,  RR* ,  <  ) ) )
176175ralbidv 2986 . . . . . . . 8  |-  ( x  =  sup ( ran 
S ,  RR* ,  <  )  ->  ( A. j  e.  NN  ( U `  j )  <_  x  <->  A. j  e.  NN  ( U `  j )  <_  sup ( ran  S ,  RR* ,  <  )
) )
177176rspcev 3309 . . . . . . 7  |-  ( ( sup ( ran  S ,  RR* ,  <  )  e.  RR  /\  A. j  e.  NN  ( U `  j )  <_  sup ( ran  S ,  RR* ,  <  ) )  ->  E. x  e.  RR  A. j  e.  NN  ( U `  j )  <_  x )
17825, 174, 177syl2anc 693 . . . . . 6  |-  ( ph  ->  E. x  e.  RR  A. j  e.  NN  ( U `  j )  <_  x )
179 ffn 6045 . . . . . . . . 9  |-  ( U : NN --> ( 0 [,) +oo )  ->  U  Fn  NN )
180148, 179syl 17 . . . . . . . 8  |-  ( ph  ->  U  Fn  NN )
181 breq1 4656 . . . . . . . . 9  |-  ( z  =  ( U `  j )  ->  (
z  <_  x  <->  ( U `  j )  <_  x
) )
182181ralrn 6362 . . . . . . . 8  |-  ( U  Fn  NN  ->  ( A. z  e.  ran  U  z  <_  x  <->  A. j  e.  NN  ( U `  j )  <_  x
) )
183180, 182syl 17 . . . . . . 7  |-  ( ph  ->  ( A. z  e. 
ran  U  z  <_  x  <->  A. j  e.  NN  ( U `  j )  <_  x ) )
184183rexbidv 3052 . . . . . 6  |-  ( ph  ->  ( E. x  e.  RR  A. z  e. 
ran  U  z  <_  x  <->  E. x  e.  RR  A. j  e.  NN  ( U `  j )  <_  x ) )
185178, 184mpbird 247 . . . . 5  |-  ( ph  ->  E. x  e.  RR  A. z  e.  ran  U  z  <_  x )
186 suprcl 10983 . . . . 5  |-  ( ( ran  U  C_  RR  /\ 
ran  U  =/=  (/)  /\  E. x  e.  RR  A. z  e.  ran  U  z  <_  x )  ->  sup ( ran  U ,  RR ,  <  )  e.  RR )
187151, 159, 185, 186syl3anc 1326 . . . 4  |-  ( ph  ->  sup ( ran  U ,  RR ,  <  )  e.  RR )
188 ssralv 3666 . . . . . . . . . 10  |-  ( ( E  i^i  B ) 
C_  E  ->  ( A. x  e.  E  E. n  e.  NN  ( ( 1st `  ( F `  n )
)  <  x  /\  x  <  ( 2nd `  ( F `  n )
) )  ->  A. x  e.  ( E  i^i  B
) E. n  e.  NN  ( ( 1st `  ( F `  n
) )  <  x  /\  x  <  ( 2nd `  ( F `  n
) ) ) ) )
1891, 188ax-mp 5 . . . . . . . . 9  |-  ( A. x  e.  E  E. n  e.  NN  (
( 1st `  ( F `  n )
)  <  x  /\  x  <  ( 2nd `  ( F `  n )
) )  ->  A. x  e.  ( E  i^i  B
) E. n  e.  NN  ( ( 1st `  ( F `  n
) )  <  x  /\  x  <  ( 2nd `  ( F `  n
) ) ) )
19021breq1i 4660 . . . . . . . . . . . . 13  |-  ( P  <  x  <->  ( 1st `  ( F `  n
) )  <  x
)
191 ovolfcl 23235 . . . . . . . . . . . . . . . . . . 19  |-  ( ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  n  e.  NN )  ->  (
( 1st `  ( F `  n )
)  e.  RR  /\  ( 2nd `  ( F `
 n ) )  e.  RR  /\  ( 1st `  ( F `  n ) )  <_ 
( 2nd `  ( F `  n )
) ) )
19218, 191sylan 488 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( 1st `  ( F `
 n ) )  e.  RR  /\  ( 2nd `  ( F `  n ) )  e.  RR  /\  ( 1st `  ( F `  n
) )  <_  ( 2nd `  ( F `  n ) ) ) )
193192simp1d 1073 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  n  e.  NN )  ->  ( 1st `  ( F `  n
) )  e.  RR )
19421, 193syl5eqel 2705 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  n  e.  NN )  ->  P  e.  RR )
195194adantlr 751 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  ( E  i^i  B
) )  /\  n  e.  NN )  ->  P  e.  RR )
1961, 3syl5ss 3614 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( E  i^i  B
)  C_  RR )
197196sselda 3603 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  ( E  i^i  B ) )  ->  x  e.  RR )
198197adantr 481 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  ( E  i^i  B
) )  /\  n  e.  NN )  ->  x  e.  RR )
199 ltle 10126 . . . . . . . . . . . . . . 15  |-  ( ( P  e.  RR  /\  x  e.  RR )  ->  ( P  <  x  ->  P  <_  x )
)
200195, 198, 199syl2anc 693 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  ( E  i^i  B
) )  /\  n  e.  NN )  ->  ( P  <  x  ->  P  <_  x ) )
201 simpr 477 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  n  e.  NN )  ->  n  e.  NN )
202 opex 4932 . . . . . . . . . . . . . . . . . . . 20  |-  <. if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q
) ,  Q >.  e. 
_V
20323fvmpt2 6291 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( n  e.  NN  /\  <. if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q
) ,  Q >.  e. 
_V )  ->  ( G `  n )  =  <. if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q ) ,  Q >. )
204201, 202, 203sylancl 694 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  n  e.  NN )  ->  ( G `
 n )  = 
<. if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q ) ,  Q >. )
205204fveq2d 6195 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  n  e.  NN )  ->  ( 1st `  ( G `  n
) )  =  ( 1st `  <. if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q
) ,  Q >. ) )
20613adantr 481 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  n  e.  NN )  ->  A  e.  RR )
207206, 194ifcld 4131 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  n  e.  NN )  ->  if ( P  <_  A ,  A ,  P )  e.  RR )
208192simp2d 1074 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  n  e.  NN )  ->  ( 2nd `  ( F `  n
) )  e.  RR )
20922, 208syl5eqel 2705 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  n  e.  NN )  ->  Q  e.  RR )
210207, 209ifcld 4131 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  n  e.  NN )  ->  if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q
)  e.  RR )
211 op1stg 7180 . . . . . . . . . . . . . . . . . . 19  |-  ( ( if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q )  e.  RR  /\  Q  e.  RR )  ->  ( 1st `  <. if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q
) ,  Q >. )  =  if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q ) )
212210, 209, 211syl2anc 693 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  n  e.  NN )  ->  ( 1st `  <. if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q ) ,  Q >. )  =  if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q
) )
213205, 212eqtrd 2656 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  n  e.  NN )  ->  ( 1st `  ( G `  n
) )  =  if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q
) )
214213ad2ant2r 783 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  ( E  i^i  B
) )  /\  (
n  e.  NN  /\  P  <_  x ) )  ->  ( 1st `  ( G `  n )
)  =  if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q
) )
215210ad2ant2r 783 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  ( E  i^i  B
) )  /\  (
n  e.  NN  /\  P  <_  x ) )  ->  if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q )  e.  RR )
216207ad2ant2r 783 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  ( E  i^i  B
) )  /\  (
n  e.  NN  /\  P  <_  x ) )  ->  if ( P  <_  A ,  A ,  P )  e.  RR )
217196ad2antrr 762 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  x  e.  ( E  i^i  B
) )  /\  (
n  e.  NN  /\  P  <_  x ) )  ->  ( E  i^i  B )  C_  RR )
218 simplr 792 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  x  e.  ( E  i^i  B
) )  /\  (
n  e.  NN  /\  P  <_  x ) )  ->  x  e.  ( E  i^i  B ) )
219217, 218sseldd 3604 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  ( E  i^i  B
) )  /\  (
n  e.  NN  /\  P  <_  x ) )  ->  x  e.  RR )
220209ad2ant2r 783 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  x  e.  ( E  i^i  B
) )  /\  (
n  e.  NN  /\  P  <_  x ) )  ->  Q  e.  RR )
221 min1 12020 . . . . . . . . . . . . . . . . . 18  |-  ( ( if ( P  <_  A ,  A ,  P )  e.  RR  /\  Q  e.  RR )  ->  if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q )  <_  if ( P  <_  A ,  A ,  P )
)
222216, 220, 221syl2anc 693 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  ( E  i^i  B
) )  /\  (
n  e.  NN  /\  P  <_  x ) )  ->  if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q )  <_  if ( P  <_  A ,  A ,  P )
)
22313ad2antrr 762 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  x  e.  ( E  i^i  B
) )  /\  (
n  e.  NN  /\  P  <_  x ) )  ->  A  e.  RR )
224 inss2 3834 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( E  i^i  B )  C_  B
225224sseli 3599 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  e.  ( E  i^i  B )  ->  x  e.  B )
226225ad2antlr 763 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  x  e.  ( E  i^i  B
) )  /\  (
n  e.  NN  /\  P  <_  x ) )  ->  x  e.  B
)
22713rexrd 10089 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ph  ->  A  e.  RR* )
228 pnfxr 10092 . . . . . . . . . . . . . . . . . . . . . . . 24  |- +oo  e.  RR*
229 elioo2 12216 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( A  e.  RR*  /\ +oo  e.  RR* )  ->  (
x  e.  ( A (,) +oo )  <->  ( x  e.  RR  /\  A  < 
x  /\  x  < +oo ) ) )
230227, 228, 229sylancl 694 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ph  ->  ( x  e.  ( A (,) +oo )  <->  ( x  e.  RR  /\  A  <  x  /\  x  < +oo ) ) )
23112eleq2i 2693 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( x  e.  B  <->  x  e.  ( A (,) +oo )
)
232 ltpnf 11954 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( x  e.  RR  ->  x  < +oo )
233232adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( x  e.  RR  /\  A  <  x )  ->  x  < +oo )
234233pm4.71i 664 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( x  e.  RR  /\  A  <  x )  <->  ( (
x  e.  RR  /\  A  <  x )  /\  x  < +oo ) )
235 df-3an 1039 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( x  e.  RR  /\  A  <  x  /\  x  < +oo )  <->  ( (
x  e.  RR  /\  A  <  x )  /\  x  < +oo ) )
236234, 235bitr4i 267 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( x  e.  RR  /\  A  <  x )  <->  ( x  e.  RR  /\  A  < 
x  /\  x  < +oo ) )
237230, 231, 2363bitr4g 303 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  ( x  e.  B  <->  ( x  e.  RR  /\  A  <  x ) ) )
238 simpr 477 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( x  e.  RR  /\  A  <  x )  ->  A  <  x )
239237, 238syl6bi 243 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  ( x  e.  B  ->  A  <  x ) )
240239ad2antrr 762 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  x  e.  ( E  i^i  B
) )  /\  (
n  e.  NN  /\  P  <_  x ) )  ->  ( x  e.  B  ->  A  <  x ) )
241226, 240mpd 15 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  x  e.  ( E  i^i  B
) )  /\  (
n  e.  NN  /\  P  <_  x ) )  ->  A  <  x
)
242223, 219, 241ltled 10185 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  x  e.  ( E  i^i  B
) )  /\  (
n  e.  NN  /\  P  <_  x ) )  ->  A  <_  x
)
243 simprr 796 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  x  e.  ( E  i^i  B
) )  /\  (
n  e.  NN  /\  P  <_  x ) )  ->  P  <_  x
)
244 breq1 4656 . . . . . . . . . . . . . . . . . . 19  |-  ( A  =  if ( P  <_  A ,  A ,  P )  ->  ( A  <_  x  <->  if ( P  <_  A ,  A ,  P )  <_  x
) )
245 breq1 4656 . . . . . . . . . . . . . . . . . . 19  |-  ( P  =  if ( P  <_  A ,  A ,  P )  ->  ( P  <_  x  <->  if ( P  <_  A ,  A ,  P )  <_  x
) )
246244, 245ifboth 4124 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  <_  x  /\  P  <_  x )  ->  if ( P  <_  A ,  A ,  P )  <_  x )
247242, 243, 246syl2anc 693 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  ( E  i^i  B
) )  /\  (
n  e.  NN  /\  P  <_  x ) )  ->  if ( P  <_  A ,  A ,  P )  <_  x
)
248215, 216, 219, 222, 247letrd 10194 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  ( E  i^i  B
) )  /\  (
n  e.  NN  /\  P  <_  x ) )  ->  if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q )  <_  x
)
249214, 248eqbrtrd 4675 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  ( E  i^i  B
) )  /\  (
n  e.  NN  /\  P  <_  x ) )  ->  ( 1st `  ( G `  n )
)  <_  x )
250249expr 643 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  ( E  i^i  B
) )  /\  n  e.  NN )  ->  ( P  <_  x  ->  ( 1st `  ( G `  n ) )  <_  x ) )
251200, 250syld 47 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  ( E  i^i  B
) )  /\  n  e.  NN )  ->  ( P  <  x  ->  ( 1st `  ( G `  n ) )  <_  x ) )
252190, 251syl5bir 233 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  ( E  i^i  B
) )  /\  n  e.  NN )  ->  (
( 1st `  ( F `  n )
)  <  x  ->  ( 1st `  ( G `
 n ) )  <_  x ) )
25322breq2i 4661 . . . . . . . . . . . . . 14  |-  ( x  <  Q  <->  x  <  ( 2nd `  ( F `
 n ) ) )
254209adantlr 751 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  ( E  i^i  B
) )  /\  n  e.  NN )  ->  Q  e.  RR )
255 ltle 10126 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  RR  /\  Q  e.  RR )  ->  ( x  <  Q  ->  x  <_  Q )
)
256198, 254, 255syl2anc 693 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  ( E  i^i  B
) )  /\  n  e.  NN )  ->  (
x  <  Q  ->  x  <_  Q ) )
257253, 256syl5bir 233 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  ( E  i^i  B
) )  /\  n  e.  NN )  ->  (
x  <  ( 2nd `  ( F `  n
) )  ->  x  <_  Q ) )
258204fveq2d 6195 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  n  e.  NN )  ->  ( 2nd `  ( G `  n
) )  =  ( 2nd `  <. if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q
) ,  Q >. ) )
259 op2ndg 7181 . . . . . . . . . . . . . . . . 17  |-  ( ( if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q )  e.  RR  /\  Q  e.  RR )  ->  ( 2nd `  <. if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q
) ,  Q >. )  =  Q )
260210, 209, 259syl2anc 693 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  n  e.  NN )  ->  ( 2nd `  <. if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q ) ,  Q >. )  =  Q )
261258, 260eqtrd 2656 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  n  e.  NN )  ->  ( 2nd `  ( G `  n
) )  =  Q )
262261adantlr 751 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  ( E  i^i  B
) )  /\  n  e.  NN )  ->  ( 2nd `  ( G `  n ) )  =  Q )
263262breq2d 4665 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  ( E  i^i  B
) )  /\  n  e.  NN )  ->  (
x  <_  ( 2nd `  ( G `  n
) )  <->  x  <_  Q ) )
264257, 263sylibrd 249 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  ( E  i^i  B
) )  /\  n  e.  NN )  ->  (
x  <  ( 2nd `  ( F `  n
) )  ->  x  <_  ( 2nd `  ( G `  n )
) ) )
265252, 264anim12d 586 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( E  i^i  B
) )  /\  n  e.  NN )  ->  (
( ( 1st `  ( F `  n )
)  <  x  /\  x  <  ( 2nd `  ( F `  n )
) )  ->  (
( 1st `  ( G `  n )
)  <_  x  /\  x  <_  ( 2nd `  ( G `  n )
) ) ) )
266265reximdva 3017 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( E  i^i  B ) )  ->  ( E. n  e.  NN  (
( 1st `  ( F `  n )
)  <  x  /\  x  <  ( 2nd `  ( F `  n )
) )  ->  E. n  e.  NN  ( ( 1st `  ( G `  n
) )  <_  x  /\  x  <_  ( 2nd `  ( G `  n
) ) ) ) )
267266ralimdva 2962 . . . . . . . . 9  |-  ( ph  ->  ( A. x  e.  ( E  i^i  B
) E. n  e.  NN  ( ( 1st `  ( F `  n
) )  <  x  /\  x  <  ( 2nd `  ( F `  n
) ) )  ->  A. x  e.  ( E  i^i  B ) E. n  e.  NN  (
( 1st `  ( G `  n )
)  <_  x  /\  x  <_  ( 2nd `  ( G `  n )
) ) ) )
268189, 267syl5 34 . . . . . . . 8  |-  ( ph  ->  ( A. x  e.  E  E. n  e.  NN  ( ( 1st `  ( F `  n
) )  <  x  /\  x  <  ( 2nd `  ( F `  n
) ) )  ->  A. x  e.  ( E  i^i  B ) E. n  e.  NN  (
( 1st `  ( G `  n )
)  <_  x  /\  x  <_  ( 2nd `  ( G `  n )
) ) ) )
269 ovolfioo 23236 . . . . . . . . 9  |-  ( ( E  C_  RR  /\  F : NN --> (  <_  i^i  ( RR  X.  RR ) ) )  -> 
( E  C_  U. ran  ( (,)  o.  F )  <->  A. x  e.  E  E. n  e.  NN  ( ( 1st `  ( F `  n )
)  <  x  /\  x  <  ( 2nd `  ( F `  n )
) ) ) )
2703, 18, 269syl2anc 693 . . . . . . . 8  |-  ( ph  ->  ( E  C_  U. ran  ( (,)  o.  F )  <->  A. x  e.  E  E. n  e.  NN  ( ( 1st `  ( F `  n )
)  <  x  /\  x  <  ( 2nd `  ( F `  n )
) ) ) )
271 ovolficc 23237 . . . . . . . . 9  |-  ( ( ( E  i^i  B
)  C_  RR  /\  G : NN --> (  <_  i^i  ( RR  X.  RR ) ) )  -> 
( ( E  i^i  B )  C_  U. ran  ( [,]  o.  G )  <->  A. x  e.  ( E  i^i  B
) E. n  e.  NN  ( ( 1st `  ( G `  n
) )  <_  x  /\  x  <_  ( 2nd `  ( G `  n
) ) ) ) )
272196, 29, 271syl2anc 693 . . . . . . . 8  |-  ( ph  ->  ( ( E  i^i  B )  C_  U. ran  ( [,]  o.  G )  <->  A. x  e.  ( E  i^i  B
) E. n  e.  NN  ( ( 1st `  ( G `  n
) )  <_  x  /\  x  <_  ( 2nd `  ( G `  n
) ) ) ) )
273268, 270, 2723imtr4d 283 . . . . . . 7  |-  ( ph  ->  ( E  C_  U. ran  ( (,)  o.  F )  ->  ( E  i^i  B )  C_  U. ran  ( [,]  o.  G ) ) )
27419, 273mpd 15 . . . . . 6  |-  ( ph  ->  ( E  i^i  B
)  C_  U. ran  ( [,]  o.  G ) )
27516ovollb2 23257 . . . . . 6  |-  ( ( G : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  ( E  i^i  B )  C_  U.
ran  ( [,]  o.  G ) )  -> 
( vol* `  ( E  i^i  B ) )  <_  sup ( ran  T ,  RR* ,  <  ) )
27629, 274, 275syl2anc 693 . . . . 5  |-  ( ph  ->  ( vol* `  ( E  i^i  B ) )  <_  sup ( ran  T ,  RR* ,  <  ) )
277 supxrre 12157 . . . . . 6  |-  ( ( ran  T  C_  RR  /\ 
ran  T  =/=  (/)  /\  E. x  e.  RR  A. z  e.  ran  T  z  <_  x )  ->  sup ( ran  T ,  RR* ,  <  )  =  sup ( ran  T ,  RR ,  <  ) )
27836, 45, 144, 277syl3anc 1326 . . . . 5  |-  ( ph  ->  sup ( ran  T ,  RR* ,  <  )  =  sup ( ran  T ,  RR ,  <  )
)
279276, 278breqtrd 4679 . . . 4  |-  ( ph  ->  ( vol* `  ( E  i^i  B ) )  <_  sup ( ran  T ,  RR ,  <  ) )
280 ssralv 3666 . . . . . . . . . 10  |-  ( ( E  \  B ) 
C_  E  ->  ( A. x  e.  E  E. n  e.  NN  ( ( 1st `  ( F `  n )
)  <  x  /\  x  <  ( 2nd `  ( F `  n )
) )  ->  A. x  e.  ( E  \  B
) E. n  e.  NN  ( ( 1st `  ( F `  n
) )  <  x  /\  x  <  ( 2nd `  ( F `  n
) ) ) ) )
2817, 280ax-mp 5 . . . . . . . . 9  |-  ( A. x  e.  E  E. n  e.  NN  (
( 1st `  ( F `  n )
)  <  x  /\  x  <  ( 2nd `  ( F `  n )
) )  ->  A. x  e.  ( E  \  B
) E. n  e.  NN  ( ( 1st `  ( F `  n
) )  <  x  /\  x  <  ( 2nd `  ( F `  n
) ) ) )
282194adantlr 751 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  ( E  \  B
) )  /\  n  e.  NN )  ->  P  e.  RR )
2837, 3syl5ss 3614 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( E  \  B
)  C_  RR )
284283sselda 3603 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  ( E  \  B ) )  ->  x  e.  RR )
285284adantr 481 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  ( E  \  B
) )  /\  n  e.  NN )  ->  x  e.  RR )
286282, 285, 199syl2anc 693 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  ( E  \  B
) )  /\  n  e.  NN )  ->  ( P  <  x  ->  P  <_  x ) )
287190, 286syl5bir 233 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  ( E  \  B
) )  /\  n  e.  NN )  ->  (
( 1st `  ( F `  n )
)  <  x  ->  P  <_  x ) )
288 opex 4932 . . . . . . . . . . . . . . . . . 18  |-  <. P ,  if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q
) >.  e.  _V
28924fvmpt2 6291 . . . . . . . . . . . . . . . . . 18  |-  ( ( n  e.  NN  /\  <. P ,  if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q ) >.  e.  _V )  ->  ( H `  n )  =  <. P ,  if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q ) >. )
290201, 288, 289sylancl 694 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  n  e.  NN )  ->  ( H `
 n )  = 
<. P ,  if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q
) >. )
291290fveq2d 6195 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  n  e.  NN )  ->  ( 1st `  ( H `  n
) )  =  ( 1st `  <. P ,  if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q
) >. ) )
292 op1stg 7180 . . . . . . . . . . . . . . . . 17  |-  ( ( P  e.  RR  /\  if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q
)  e.  RR )  ->  ( 1st `  <. P ,  if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q ) >. )  =  P )
293194, 210, 292syl2anc 693 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  n  e.  NN )  ->  ( 1st `  <. P ,  if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q
) >. )  =  P )
294291, 293eqtrd 2656 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  n  e.  NN )  ->  ( 1st `  ( H `  n
) )  =  P )
295294adantlr 751 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  ( E  \  B
) )  /\  n  e.  NN )  ->  ( 1st `  ( H `  n ) )  =  P )
296295breq1d 4663 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  ( E  \  B
) )  /\  n  e.  NN )  ->  (
( 1st `  ( H `  n )
)  <_  x  <->  P  <_  x ) )
297287, 296sylibrd 249 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  ( E  \  B
) )  /\  n  e.  NN )  ->  (
( 1st `  ( F `  n )
)  <  x  ->  ( 1st `  ( H `
 n ) )  <_  x ) )
298209adantlr 751 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  ( E  \  B
) )  /\  n  e.  NN )  ->  Q  e.  RR )
299285, 298, 255syl2anc 693 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  ( E  \  B
) )  /\  n  e.  NN )  ->  (
x  <  Q  ->  x  <_  Q ) )
300283ad2antrr 762 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  x  e.  ( E  \  B
) )  /\  (
n  e.  NN  /\  x  <_  Q ) )  ->  ( E  \  B )  C_  RR )
301 simplr 792 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  x  e.  ( E  \  B
) )  /\  (
n  e.  NN  /\  x  <_  Q ) )  ->  x  e.  ( E  \  B ) )
302300, 301sseldd 3604 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  x  e.  ( E  \  B
) )  /\  (
n  e.  NN  /\  x  <_  Q ) )  ->  x  e.  RR )
30313ad2antrr 762 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  x  e.  ( E  \  B
) )  /\  (
n  e.  NN  /\  x  <_  Q ) )  ->  A  e.  RR )
304194ad2ant2r 783 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  x  e.  ( E  \  B
) )  /\  (
n  e.  NN  /\  x  <_  Q ) )  ->  P  e.  RR )
305303, 304ifcld 4131 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  x  e.  ( E  \  B
) )  /\  (
n  e.  NN  /\  x  <_  Q ) )  ->  if ( P  <_  A ,  A ,  P )  e.  RR )
306 eldifn 3733 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  e.  ( E  \  B )  ->  -.  x  e.  B )
307306ad2antlr 763 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  x  e.  ( E  \  B
) )  /\  (
n  e.  NN  /\  x  <_  Q ) )  ->  -.  x  e.  B )
308302biantrurd 529 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  x  e.  ( E  \  B
) )  /\  (
n  e.  NN  /\  x  <_  Q ) )  ->  ( A  < 
x  <->  ( x  e.  RR  /\  A  < 
x ) ) )
309237ad2antrr 762 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  x  e.  ( E  \  B
) )  /\  (
n  e.  NN  /\  x  <_  Q ) )  ->  ( x  e.  B  <->  ( x  e.  RR  /\  A  < 
x ) ) )
310308, 309bitr4d 271 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  x  e.  ( E  \  B
) )  /\  (
n  e.  NN  /\  x  <_  Q ) )  ->  ( A  < 
x  <->  x  e.  B
) )
311307, 310mtbird 315 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  x  e.  ( E  \  B
) )  /\  (
n  e.  NN  /\  x  <_  Q ) )  ->  -.  A  <  x )
312302, 303lenltd 10183 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  x  e.  ( E  \  B
) )  /\  (
n  e.  NN  /\  x  <_  Q ) )  ->  ( x  <_  A 
<->  -.  A  <  x
) )
313311, 312mpbird 247 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  x  e.  ( E  \  B
) )  /\  (
n  e.  NN  /\  x  <_  Q ) )  ->  x  <_  A
)
314 max2 12018 . . . . . . . . . . . . . . . . . . 19  |-  ( ( P  e.  RR  /\  A  e.  RR )  ->  A  <_  if ( P  <_  A ,  A ,  P ) )
315304, 303, 314syl2anc 693 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  x  e.  ( E  \  B
) )  /\  (
n  e.  NN  /\  x  <_  Q ) )  ->  A  <_  if ( P  <_  A ,  A ,  P )
)
316302, 303, 305, 313, 315letrd 10194 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  ( E  \  B
) )  /\  (
n  e.  NN  /\  x  <_  Q ) )  ->  x  <_  if ( P  <_  A ,  A ,  P )
)
317 simprr 796 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  ( E  \  B
) )  /\  (
n  e.  NN  /\  x  <_  Q ) )  ->  x  <_  Q
)
318 breq2 4657 . . . . . . . . . . . . . . . . . 18  |-  ( if ( P  <_  A ,  A ,  P )  =  if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q )  ->  (
x  <_  if ( P  <_  A ,  A ,  P )  <->  x  <_  if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q
) ) )
319 breq2 4657 . . . . . . . . . . . . . . . . . 18  |-  ( Q  =  if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q )  ->  (
x  <_  Q  <->  x  <_  if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q
) ) )
320318, 319ifboth 4124 . . . . . . . . . . . . . . . . 17  |-  ( ( x  <_  if ( P  <_  A ,  A ,  P )  /\  x  <_  Q )  ->  x  <_  if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q ) )
321316, 317, 320syl2anc 693 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  ( E  \  B
) )  /\  (
n  e.  NN  /\  x  <_  Q ) )  ->  x  <_  if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q
) )
322290fveq2d 6195 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  n  e.  NN )  ->  ( 2nd `  ( H `  n
) )  =  ( 2nd `  <. P ,  if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q
) >. ) )
323 op2ndg 7181 . . . . . . . . . . . . . . . . . . 19  |-  ( ( P  e.  RR  /\  if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q
)  e.  RR )  ->  ( 2nd `  <. P ,  if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q ) >. )  =  if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q ) )
324194, 210, 323syl2anc 693 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  n  e.  NN )  ->  ( 2nd `  <. P ,  if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q
) >. )  =  if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q
) )
325322, 324eqtrd 2656 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  n  e.  NN )  ->  ( 2nd `  ( H `  n
) )  =  if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q
) )
326325ad2ant2r 783 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  ( E  \  B
) )  /\  (
n  e.  NN  /\  x  <_  Q ) )  ->  ( 2nd `  ( H `  n )
)  =  if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q
) )
327321, 326breqtrrd 4681 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  ( E  \  B
) )  /\  (
n  e.  NN  /\  x  <_  Q ) )  ->  x  <_  ( 2nd `  ( H `  n ) ) )
328327expr 643 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  ( E  \  B
) )  /\  n  e.  NN )  ->  (
x  <_  Q  ->  x  <_  ( 2nd `  ( H `  n )
) ) )
329299, 328syld 47 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  ( E  \  B
) )  /\  n  e.  NN )  ->  (
x  <  Q  ->  x  <_  ( 2nd `  ( H `  n )
) ) )
330253, 329syl5bir 233 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  ( E  \  B
) )  /\  n  e.  NN )  ->  (
x  <  ( 2nd `  ( F `  n
) )  ->  x  <_  ( 2nd `  ( H `  n )
) ) )
331297, 330anim12d 586 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( E  \  B
) )  /\  n  e.  NN )  ->  (
( ( 1st `  ( F `  n )
)  <  x  /\  x  <  ( 2nd `  ( F `  n )
) )  ->  (
( 1st `  ( H `  n )
)  <_  x  /\  x  <_  ( 2nd `  ( H `  n )
) ) ) )
332331reximdva 3017 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( E  \  B ) )  ->  ( E. n  e.  NN  (
( 1st `  ( F `  n )
)  <  x  /\  x  <  ( 2nd `  ( F `  n )
) )  ->  E. n  e.  NN  ( ( 1st `  ( H `  n
) )  <_  x  /\  x  <_  ( 2nd `  ( H `  n
) ) ) ) )
333332ralimdva 2962 . . . . . . . . 9  |-  ( ph  ->  ( A. x  e.  ( E  \  B
) E. n  e.  NN  ( ( 1st `  ( F `  n
) )  <  x  /\  x  <  ( 2nd `  ( F `  n
) ) )  ->  A. x  e.  ( E  \  B ) E. n  e.  NN  (
( 1st `  ( H `  n )
)  <_  x  /\  x  <_  ( 2nd `  ( H `  n )
) ) ) )
334281, 333syl5 34 . . . . . . . 8  |-  ( ph  ->  ( A. x  e.  E  E. n  e.  NN  ( ( 1st `  ( F `  n
) )  <  x  /\  x  <  ( 2nd `  ( F `  n
) ) )  ->  A. x  e.  ( E  \  B ) E. n  e.  NN  (
( 1st `  ( H `  n )
)  <_  x  /\  x  <_  ( 2nd `  ( H `  n )
) ) ) )
335 ovolficc 23237 . . . . . . . . 9  |-  ( ( ( E  \  B
)  C_  RR  /\  H : NN --> (  <_  i^i  ( RR  X.  RR ) ) )  -> 
( ( E  \  B )  C_  U. ran  ( [,]  o.  H )  <->  A. x  e.  ( E  \  B ) E. n  e.  NN  (
( 1st `  ( H `  n )
)  <_  x  /\  x  <_  ( 2nd `  ( H `  n )
) ) ) )
336283, 71, 335syl2anc 693 . . . . . . . 8  |-  ( ph  ->  ( ( E  \  B )  C_  U. ran  ( [,]  o.  H )  <->  A. x  e.  ( E  \  B ) E. n  e.  NN  (
( 1st `  ( H `  n )
)  <_  x  /\  x  <_  ( 2nd `  ( H `  n )
) ) ) )
337334, 270, 3363imtr4d 283 . . . . . . 7  |-  ( ph  ->  ( E  C_  U. ran  ( (,)  o.  F )  ->  ( E  \  B )  C_  U. ran  ( [,]  o.  H ) ) )
33819, 337mpd 15 . . . . . 6  |-  ( ph  ->  ( E  \  B
)  C_  U. ran  ( [,]  o.  H ) )
33917ovollb2 23257 . . . . . 6  |-  ( ( H : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  ( E  \  B )  C_  U.
ran  ( [,]  o.  H ) )  -> 
( vol* `  ( E  \  B ) )  <_  sup ( ran  U ,  RR* ,  <  ) )
34071, 338, 339syl2anc 693 . . . . 5  |-  ( ph  ->  ( vol* `  ( E  \  B ) )  <_  sup ( ran  U ,  RR* ,  <  ) )
341 supxrre 12157 . . . . . 6  |-  ( ( ran  U  C_  RR  /\ 
ran  U  =/=  (/)  /\  E. x  e.  RR  A. z  e.  ran  U  z  <_  x )  ->  sup ( ran  U ,  RR* ,  <  )  =  sup ( ran  U ,  RR ,  <  ) )
342151, 159, 185, 341syl3anc 1326 . . . . 5  |-  ( ph  ->  sup ( ran  U ,  RR* ,  <  )  =  sup ( ran  U ,  RR ,  <  )
)
343340, 342breqtrd 4679 . . . 4  |-  ( ph  ->  ( vol* `  ( E  \  B ) )  <_  sup ( ran  U ,  RR ,  <  ) )
3446, 10, 146, 187, 279, 343le2addd 10646 . . 3  |-  ( ph  ->  ( ( vol* `  ( E  i^i  B
) )  +  ( vol* `  ( E  \  B ) ) )  <_  ( sup ( ran  T ,  RR ,  <  )  +  sup ( ran  U ,  RR ,  <  ) ) )
345 eqidd 2623 . . . . . 6  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( ( abs  o.  -  )  o.  G ) `  n )  =  ( ( ( abs  o.  -  )  o.  G
) `  n )
)
34655, 16, 89, 345, 62, 165, 137isumsup2 14578 . . . . 5  |-  ( ph  ->  T  ~~>  sup ( ran  T ,  RR ,  <  )
)
347 seqex 12803 . . . . . . 7  |-  seq 1
(  +  ,  ( ( abs  o.  -  )  o.  F )
)  e.  _V
34815, 347eqeltri 2697 . . . . . 6  |-  S  e. 
_V
349348a1i 11 . . . . 5  |-  ( ph  ->  S  e.  _V )
350 eqidd 2623 . . . . . 6  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( ( abs  o.  -  )  o.  H ) `  n )  =  ( ( ( abs  o.  -  )  o.  H
) `  n )
)
35155, 17, 89, 350, 79, 78, 178isumsup2 14578 . . . . 5  |-  ( ph  ->  U  ~~>  sup ( ran  U ,  RR ,  <  )
)
35247recnd 10068 . . . . 5  |-  ( (
ph  /\  j  e.  NN )  ->  ( T `
 j )  e.  CC )
353161recnd 10068 . . . . 5  |-  ( (
ph  /\  j  e.  NN )  ->  ( U `
 j )  e.  CC )
35462recnd 10068 . . . . . . . 8  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( ( abs  o.  -  )  o.  G ) `  n )  e.  CC )
35557, 58, 354syl2an 494 . . . . . . 7  |-  ( ( ( ph  /\  j  e.  NN )  /\  n  e.  ( 1 ... j
) )  ->  (
( ( abs  o.  -  )  o.  G
) `  n )  e.  CC )
35679recnd 10068 . . . . . . . 8  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( ( abs  o.  -  )  o.  H ) `  n )  e.  CC )
35757, 58, 356syl2an 494 . . . . . . 7  |-  ( ( ( ph  /\  j  e.  NN )  /\  n  e.  ( 1 ... j
) )  ->  (
( ( abs  o.  -  )  o.  H
) `  n )  e.  CC )
35882eqcomd 2628 . . . . . . . 8  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( ( abs  o.  -  )  o.  F ) `  n )  =  ( ( ( ( abs 
o.  -  )  o.  G ) `  n
)  +  ( ( ( abs  o.  -  )  o.  H ) `  n ) ) )
35957, 58, 358syl2an 494 . . . . . . 7  |-  ( ( ( ph  /\  j  e.  NN )  /\  n  e.  ( 1 ... j
) )  ->  (
( ( abs  o.  -  )  o.  F
) `  n )  =  ( ( ( ( abs  o.  -  )  o.  G ) `  n )  +  ( ( ( abs  o.  -  )  o.  H
) `  n )
) )
36056, 355, 357, 359seradd 12843 . . . . . 6  |-  ( (
ph  /\  j  e.  NN )  ->  (  seq 1 (  +  , 
( ( abs  o.  -  )  o.  F
) ) `  j
)  =  ( (  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  G ) ) `  j )  +  (  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  H ) ) `  j ) ) )
36186, 171oveq12i 6662 . . . . . 6  |-  ( ( T `  j )  +  ( U `  j ) )  =  ( (  seq 1
(  +  ,  ( ( abs  o.  -  )  o.  G )
) `  j )  +  (  seq 1
(  +  ,  ( ( abs  o.  -  )  o.  H )
) `  j )
)
362360, 87, 3613eqtr4g 2681 . . . . 5  |-  ( (
ph  /\  j  e.  NN )  ->  ( S `
 j )  =  ( ( T `  j )  +  ( U `  j ) ) )
36355, 89, 346, 349, 351, 352, 353, 362climadd 14362 . . . 4  |-  ( ph  ->  S  ~~>  ( sup ( ran  T ,  RR ,  <  )  +  sup ( ran  U ,  RR ,  <  ) ) )
364 climuni 14283 . . . 4  |-  ( ( S  ~~>  ( sup ( ran  T ,  RR ,  <  )  +  sup ( ran  U ,  RR ,  <  ) )  /\  S  ~~>  sup ( ran  S ,  RR* ,  <  ) )  ->  ( sup ( ran  T ,  RR ,  <  )  +  sup ( ran  U ,  RR ,  <  ) )  =  sup ( ran  S ,  RR* ,  <  ) )
365363, 125, 364syl2anc 693 . . 3  |-  ( ph  ->  ( sup ( ran 
T ,  RR ,  <  )  +  sup ( ran  U ,  RR ,  <  ) )  =  sup ( ran  S ,  RR* ,  <  ) )
366344, 365breqtrd 4679 . 2  |-  ( ph  ->  ( ( vol* `  ( E  i^i  B
) )  +  ( vol* `  ( E  \  B ) ) )  <_  sup ( ran  S ,  RR* ,  <  ) )
36711, 25, 27, 366, 20letrd 10194 1  |-  ( ph  ->  ( ( vol* `  ( E  i^i  B
) )  +  ( vol* `  ( E  \  B ) ) )  <_  ( ( vol* `  E )  +  C ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   _Vcvv 3200    \ cdif 3571    i^i cin 3573    C_ wss 3574   (/)c0 3915   ifcif 4086   <.cop 4183   U.cuni 4436   class class class wbr 4653    |-> cmpt 4729    X. cxp 5112   dom cdm 5114   ran crn 5115    o. ccom 5118    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650   1stc1st 7166   2ndc2nd 7167   supcsup 8346   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939   +oocpnf 10071   RR*cxr 10073    < clt 10074    <_ cle 10075    - cmin 10266   NNcn 11020   ZZ>=cuz 11687   RR+crp 11832   (,)cioo 12175   [,)cico 12177   [,]cicc 12178   ...cfz 12326    seqcseq 12801   abscabs 13974    ~~> cli 14215   vol*covol 23231
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-ioo 12179  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-rlim 14220  df-sum 14417  df-ovol 23233
This theorem is referenced by:  ioombl1  23330
  Copyright terms: Public domain W3C validator