MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ioombl1 Structured version   Visualization version   Unicode version

Theorem ioombl1 23330
Description: An open right-unbounded interval is measurable. (Contributed by Mario Carneiro, 16-Jun-2014.) (Proof shortened by Mario Carneiro, 25-Mar-2015.)
Assertion
Ref Expression
ioombl1  |-  ( A  e.  RR*  ->  ( A (,) +oo )  e. 
dom  vol )

Proof of Theorem ioombl1
Dummy variables  f  m  n  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elxr 11950 . 2  |-  ( A  e.  RR*  <->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
2 ioossre 12235 . . . . 5  |-  ( A (,) +oo )  C_  RR
32a1i 11 . . . 4  |-  ( A  e.  RR  ->  ( A (,) +oo )  C_  RR )
4 elpwi 4168 . . . . . 6  |-  ( x  e.  ~P RR  ->  x 
C_  RR )
5 simplrl 800 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  ( x  C_  RR  /\  ( vol* `  x )  e.  RR ) )  /\  y  e.  RR+ )  ->  x  C_  RR )
6 simplrr 801 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  ( x  C_  RR  /\  ( vol* `  x )  e.  RR ) )  /\  y  e.  RR+ )  ->  ( vol* `  x )  e.  RR )
7 simpr 477 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  ( x  C_  RR  /\  ( vol* `  x )  e.  RR ) )  /\  y  e.  RR+ )  ->  y  e.  RR+ )
8 eqid 2622 . . . . . . . . . . . 12  |-  seq 1
(  +  ,  ( ( abs  o.  -  )  o.  f )
)  =  seq 1
(  +  ,  ( ( abs  o.  -  )  o.  f )
)
98ovolgelb 23248 . . . . . . . . . . 11  |-  ( ( x  C_  RR  /\  ( vol* `  x )  e.  RR  /\  y  e.  RR+ )  ->  E. f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( x  C_  U.
ran  ( (,)  o.  f )  /\  sup ( ran  seq 1 (  +  ,  ( ( abs  o.  -  )  o.  f ) ) , 
RR* ,  <  )  <_ 
( ( vol* `  x )  +  y ) ) )
105, 6, 7, 9syl3anc 1326 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  ( x  C_  RR  /\  ( vol* `  x )  e.  RR ) )  /\  y  e.  RR+ )  ->  E. f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( x  C_  U.
ran  ( (,)  o.  f )  /\  sup ( ran  seq 1 (  +  ,  ( ( abs  o.  -  )  o.  f ) ) , 
RR* ,  <  )  <_ 
( ( vol* `  x )  +  y ) ) )
11 eqid 2622 . . . . . . . . . . 11  |-  ( A (,) +oo )  =  ( A (,) +oo )
12 simplll 798 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR  /\  ( x 
C_  RR  /\  ( vol* `  x )  e.  RR ) )  /\  y  e.  RR+ )  /\  ( f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  /\  ( x  C_  U.
ran  ( (,)  o.  f )  /\  sup ( ran  seq 1 (  +  ,  ( ( abs  o.  -  )  o.  f ) ) , 
RR* ,  <  )  <_ 
( ( vol* `  x )  +  y ) ) ) )  ->  A  e.  RR )
135adantr 481 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR  /\  ( x 
C_  RR  /\  ( vol* `  x )  e.  RR ) )  /\  y  e.  RR+ )  /\  ( f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  /\  ( x  C_  U.
ran  ( (,)  o.  f )  /\  sup ( ran  seq 1 (  +  ,  ( ( abs  o.  -  )  o.  f ) ) , 
RR* ,  <  )  <_ 
( ( vol* `  x )  +  y ) ) ) )  ->  x  C_  RR )
146adantr 481 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR  /\  ( x 
C_  RR  /\  ( vol* `  x )  e.  RR ) )  /\  y  e.  RR+ )  /\  ( f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  /\  ( x  C_  U.
ran  ( (,)  o.  f )  /\  sup ( ran  seq 1 (  +  ,  ( ( abs  o.  -  )  o.  f ) ) , 
RR* ,  <  )  <_ 
( ( vol* `  x )  +  y ) ) ) )  ->  ( vol* `  x )  e.  RR )
15 simplr 792 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR  /\  ( x 
C_  RR  /\  ( vol* `  x )  e.  RR ) )  /\  y  e.  RR+ )  /\  ( f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  /\  ( x  C_  U.
ran  ( (,)  o.  f )  /\  sup ( ran  seq 1 (  +  ,  ( ( abs  o.  -  )  o.  f ) ) , 
RR* ,  <  )  <_ 
( ( vol* `  x )  +  y ) ) ) )  ->  y  e.  RR+ )
16 eqid 2622 . . . . . . . . . . 11  |-  seq 1
(  +  ,  ( ( abs  o.  -  )  o.  ( m  e.  NN  |->  <. if ( if ( ( 1st `  (
f `  m )
)  <_  A ,  A ,  ( 1st `  ( f `  m
) ) )  <_ 
( 2nd `  (
f `  m )
) ,  if ( ( 1st `  (
f `  m )
)  <_  A ,  A ,  ( 1st `  ( f `  m
) ) ) ,  ( 2nd `  (
f `  m )
) ) ,  ( 2nd `  ( f `
 m ) )
>. ) ) )  =  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  ( m  e.  NN  |->  <. if ( if ( ( 1st `  (
f `  m )
)  <_  A ,  A ,  ( 1st `  ( f `  m
) ) )  <_ 
( 2nd `  (
f `  m )
) ,  if ( ( 1st `  (
f `  m )
)  <_  A ,  A ,  ( 1st `  ( f `  m
) ) ) ,  ( 2nd `  (
f `  m )
) ) ,  ( 2nd `  ( f `
 m ) )
>. ) ) )
17 eqid 2622 . . . . . . . . . . 11  |-  seq 1
(  +  ,  ( ( abs  o.  -  )  o.  ( m  e.  NN  |->  <. ( 1st `  (
f `  m )
) ,  if ( if ( ( 1st `  ( f `  m
) )  <_  A ,  A ,  ( 1st `  ( f `  m
) ) )  <_ 
( 2nd `  (
f `  m )
) ,  if ( ( 1st `  (
f `  m )
)  <_  A ,  A ,  ( 1st `  ( f `  m
) ) ) ,  ( 2nd `  (
f `  m )
) ) >. )
) )  =  seq 1 (  +  , 
( ( abs  o.  -  )  o.  (
m  e.  NN  |->  <.
( 1st `  (
f `  m )
) ,  if ( if ( ( 1st `  ( f `  m
) )  <_  A ,  A ,  ( 1st `  ( f `  m
) ) )  <_ 
( 2nd `  (
f `  m )
) ,  if ( ( 1st `  (
f `  m )
)  <_  A ,  A ,  ( 1st `  ( f `  m
) ) ) ,  ( 2nd `  (
f `  m )
) ) >. )
) )
18 simprl 794 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  RR  /\  ( x 
C_  RR  /\  ( vol* `  x )  e.  RR ) )  /\  y  e.  RR+ )  /\  ( f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  /\  ( x  C_  U.
ran  ( (,)  o.  f )  /\  sup ( ran  seq 1 (  +  ,  ( ( abs  o.  -  )  o.  f ) ) , 
RR* ,  <  )  <_ 
( ( vol* `  x )  +  y ) ) ) )  ->  f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) )
19 reex 10027 . . . . . . . . . . . . . . 15  |-  RR  e.  _V
2019, 19xpex 6962 . . . . . . . . . . . . . 14  |-  ( RR 
X.  RR )  e. 
_V
2120inex2 4800 . . . . . . . . . . . . 13  |-  (  <_  i^i  ( RR  X.  RR ) )  e.  _V
22 nnex 11026 . . . . . . . . . . . . 13  |-  NN  e.  _V
2321, 22elmap 7886 . . . . . . . . . . . 12  |-  ( f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) 
<->  f : NN --> (  <_  i^i  ( RR  X.  RR ) ) )
2418, 23sylib 208 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR  /\  ( x 
C_  RR  /\  ( vol* `  x )  e.  RR ) )  /\  y  e.  RR+ )  /\  ( f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  /\  ( x  C_  U.
ran  ( (,)  o.  f )  /\  sup ( ran  seq 1 (  +  ,  ( ( abs  o.  -  )  o.  f ) ) , 
RR* ,  <  )  <_ 
( ( vol* `  x )  +  y ) ) ) )  ->  f : NN --> (  <_  i^i  ( RR  X.  RR ) ) )
25 simprrl 804 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR  /\  ( x 
C_  RR  /\  ( vol* `  x )  e.  RR ) )  /\  y  e.  RR+ )  /\  ( f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  /\  ( x  C_  U.
ran  ( (,)  o.  f )  /\  sup ( ran  seq 1 (  +  ,  ( ( abs  o.  -  )  o.  f ) ) , 
RR* ,  <  )  <_ 
( ( vol* `  x )  +  y ) ) ) )  ->  x  C_  U. ran  ( (,)  o.  f ) )
26 simprrr 805 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR  /\  ( x 
C_  RR  /\  ( vol* `  x )  e.  RR ) )  /\  y  e.  RR+ )  /\  ( f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  /\  ( x  C_  U.
ran  ( (,)  o.  f )  /\  sup ( ran  seq 1 (  +  ,  ( ( abs  o.  -  )  o.  f ) ) , 
RR* ,  <  )  <_ 
( ( vol* `  x )  +  y ) ) ) )  ->  sup ( ran  seq 1 (  +  , 
( ( abs  o.  -  )  o.  f
) ) ,  RR* ,  <  )  <_  (
( vol* `  x )  +  y ) )
27 eqid 2622 . . . . . . . . . . 11  |-  ( 1st `  ( f `  n
) )  =  ( 1st `  ( f `
 n ) )
28 eqid 2622 . . . . . . . . . . 11  |-  ( 2nd `  ( f `  n
) )  =  ( 2nd `  ( f `
 n ) )
29 fveq2 6191 . . . . . . . . . . . . . . . . . 18  |-  ( m  =  n  ->  (
f `  m )  =  ( f `  n ) )
3029fveq2d 6195 . . . . . . . . . . . . . . . . 17  |-  ( m  =  n  ->  ( 1st `  ( f `  m ) )  =  ( 1st `  (
f `  n )
) )
3130breq1d 4663 . . . . . . . . . . . . . . . 16  |-  ( m  =  n  ->  (
( 1st `  (
f `  m )
)  <_  A  <->  ( 1st `  ( f `  n
) )  <_  A
) )
3231, 30ifbieq2d 4111 . . . . . . . . . . . . . . 15  |-  ( m  =  n  ->  if ( ( 1st `  (
f `  m )
)  <_  A ,  A ,  ( 1st `  ( f `  m
) ) )  =  if ( ( 1st `  ( f `  n
) )  <_  A ,  A ,  ( 1st `  ( f `  n
) ) ) )
3329fveq2d 6195 . . . . . . . . . . . . . . 15  |-  ( m  =  n  ->  ( 2nd `  ( f `  m ) )  =  ( 2nd `  (
f `  n )
) )
3432, 33breq12d 4666 . . . . . . . . . . . . . 14  |-  ( m  =  n  ->  ( if ( ( 1st `  (
f `  m )
)  <_  A ,  A ,  ( 1st `  ( f `  m
) ) )  <_ 
( 2nd `  (
f `  m )
)  <->  if ( ( 1st `  ( f `  n
) )  <_  A ,  A ,  ( 1st `  ( f `  n
) ) )  <_ 
( 2nd `  (
f `  n )
) ) )
3534, 32, 33ifbieq12d 4113 . . . . . . . . . . . . 13  |-  ( m  =  n  ->  if ( if ( ( 1st `  ( f `  m
) )  <_  A ,  A ,  ( 1st `  ( f `  m
) ) )  <_ 
( 2nd `  (
f `  m )
) ,  if ( ( 1st `  (
f `  m )
)  <_  A ,  A ,  ( 1st `  ( f `  m
) ) ) ,  ( 2nd `  (
f `  m )
) )  =  if ( if ( ( 1st `  ( f `
 n ) )  <_  A ,  A ,  ( 1st `  (
f `  n )
) )  <_  ( 2nd `  ( f `  n ) ) ,  if ( ( 1st `  ( f `  n
) )  <_  A ,  A ,  ( 1st `  ( f `  n
) ) ) ,  ( 2nd `  (
f `  n )
) ) )
3635, 33opeq12d 4410 . . . . . . . . . . . 12  |-  ( m  =  n  ->  <. if ( if ( ( 1st `  ( f `  m
) )  <_  A ,  A ,  ( 1st `  ( f `  m
) ) )  <_ 
( 2nd `  (
f `  m )
) ,  if ( ( 1st `  (
f `  m )
)  <_  A ,  A ,  ( 1st `  ( f `  m
) ) ) ,  ( 2nd `  (
f `  m )
) ) ,  ( 2nd `  ( f `
 m ) )
>.  =  <. if ( if ( ( 1st `  ( f `  n
) )  <_  A ,  A ,  ( 1st `  ( f `  n
) ) )  <_ 
( 2nd `  (
f `  n )
) ,  if ( ( 1st `  (
f `  n )
)  <_  A ,  A ,  ( 1st `  ( f `  n
) ) ) ,  ( 2nd `  (
f `  n )
) ) ,  ( 2nd `  ( f `
 n ) )
>. )
3736cbvmptv 4750 . . . . . . . . . . 11  |-  ( m  e.  NN  |->  <. if ( if ( ( 1st `  ( f `  m
) )  <_  A ,  A ,  ( 1st `  ( f `  m
) ) )  <_ 
( 2nd `  (
f `  m )
) ,  if ( ( 1st `  (
f `  m )
)  <_  A ,  A ,  ( 1st `  ( f `  m
) ) ) ,  ( 2nd `  (
f `  m )
) ) ,  ( 2nd `  ( f `
 m ) )
>. )  =  (
n  e.  NN  |->  <. if ( if ( ( 1st `  ( f `
 n ) )  <_  A ,  A ,  ( 1st `  (
f `  n )
) )  <_  ( 2nd `  ( f `  n ) ) ,  if ( ( 1st `  ( f `  n
) )  <_  A ,  A ,  ( 1st `  ( f `  n
) ) ) ,  ( 2nd `  (
f `  n )
) ) ,  ( 2nd `  ( f `
 n ) )
>. )
3830, 35opeq12d 4410 . . . . . . . . . . . 12  |-  ( m  =  n  ->  <. ( 1st `  ( f `  m ) ) ,  if ( if ( ( 1st `  (
f `  m )
)  <_  A ,  A ,  ( 1st `  ( f `  m
) ) )  <_ 
( 2nd `  (
f `  m )
) ,  if ( ( 1st `  (
f `  m )
)  <_  A ,  A ,  ( 1st `  ( f `  m
) ) ) ,  ( 2nd `  (
f `  m )
) ) >.  =  <. ( 1st `  ( f `
 n ) ) ,  if ( if ( ( 1st `  (
f `  n )
)  <_  A ,  A ,  ( 1st `  ( f `  n
) ) )  <_ 
( 2nd `  (
f `  n )
) ,  if ( ( 1st `  (
f `  n )
)  <_  A ,  A ,  ( 1st `  ( f `  n
) ) ) ,  ( 2nd `  (
f `  n )
) ) >. )
3938cbvmptv 4750 . . . . . . . . . . 11  |-  ( m  e.  NN  |->  <. ( 1st `  ( f `  m ) ) ,  if ( if ( ( 1st `  (
f `  m )
)  <_  A ,  A ,  ( 1st `  ( f `  m
) ) )  <_ 
( 2nd `  (
f `  m )
) ,  if ( ( 1st `  (
f `  m )
)  <_  A ,  A ,  ( 1st `  ( f `  m
) ) ) ,  ( 2nd `  (
f `  m )
) ) >. )  =  ( n  e.  NN  |->  <. ( 1st `  (
f `  n )
) ,  if ( if ( ( 1st `  ( f `  n
) )  <_  A ,  A ,  ( 1st `  ( f `  n
) ) )  <_ 
( 2nd `  (
f `  n )
) ,  if ( ( 1st `  (
f `  n )
)  <_  A ,  A ,  ( 1st `  ( f `  n
) ) ) ,  ( 2nd `  (
f `  n )
) ) >. )
4011, 12, 13, 14, 15, 8, 16, 17, 24, 25, 26, 27, 28, 37, 39ioombl1lem4 23329 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR  /\  ( x 
C_  RR  /\  ( vol* `  x )  e.  RR ) )  /\  y  e.  RR+ )  /\  ( f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  /\  ( x  C_  U.
ran  ( (,)  o.  f )  /\  sup ( ran  seq 1 (  +  ,  ( ( abs  o.  -  )  o.  f ) ) , 
RR* ,  <  )  <_ 
( ( vol* `  x )  +  y ) ) ) )  ->  ( ( vol* `  ( x  i^i  ( A (,) +oo ) ) )  +  ( vol* `  ( x  \  ( A (,) +oo ) ) ) )  <_  (
( vol* `  x )  +  y ) )
4110, 40rexlimddv 3035 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  ( x  C_  RR  /\  ( vol* `  x )  e.  RR ) )  /\  y  e.  RR+ )  ->  (
( vol* `  ( x  i^i  ( A (,) +oo ) ) )  +  ( vol* `  ( x  \  ( A (,) +oo ) ) ) )  <_  ( ( vol* `  x )  +  y ) )
4241ralrimiva 2966 . . . . . . . 8  |-  ( ( A  e.  RR  /\  ( x  C_  RR  /\  ( vol* `  x
)  e.  RR ) )  ->  A. y  e.  RR+  ( ( vol* `  ( x  i^i  ( A (,) +oo ) ) )  +  ( vol* `  ( x  \  ( A (,) +oo ) ) ) )  <_  (
( vol* `  x )  +  y ) )
43 inss1 3833 . . . . . . . . . . . 12  |-  ( x  i^i  ( A (,) +oo ) )  C_  x
44 ovolsscl 23254 . . . . . . . . . . . 12  |-  ( ( ( x  i^i  ( A (,) +oo ) ) 
C_  x  /\  x  C_  RR  /\  ( vol* `  x )  e.  RR )  ->  ( vol* `  ( x  i^i  ( A (,) +oo ) ) )  e.  RR )
4543, 44mp3an1 1411 . . . . . . . . . . 11  |-  ( ( x  C_  RR  /\  ( vol* `  x )  e.  RR )  -> 
( vol* `  ( x  i^i  ( A (,) +oo ) ) )  e.  RR )
4645adantl 482 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  ( x  C_  RR  /\  ( vol* `  x
)  e.  RR ) )  ->  ( vol* `  ( x  i^i  ( A (,) +oo ) ) )  e.  RR )
47 difss 3737 . . . . . . . . . . . 12  |-  ( x 
\  ( A (,) +oo ) )  C_  x
48 ovolsscl 23254 . . . . . . . . . . . 12  |-  ( ( ( x  \  ( A (,) +oo ) ) 
C_  x  /\  x  C_  RR  /\  ( vol* `  x )  e.  RR )  ->  ( vol* `  ( x 
\  ( A (,) +oo ) ) )  e.  RR )
4947, 48mp3an1 1411 . . . . . . . . . . 11  |-  ( ( x  C_  RR  /\  ( vol* `  x )  e.  RR )  -> 
( vol* `  ( x  \  ( A (,) +oo ) ) )  e.  RR )
5049adantl 482 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  ( x  C_  RR  /\  ( vol* `  x
)  e.  RR ) )  ->  ( vol* `  ( x  \ 
( A (,) +oo ) ) )  e.  RR )
5146, 50readdcld 10069 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  ( x  C_  RR  /\  ( vol* `  x
)  e.  RR ) )  ->  ( ( vol* `  ( x  i^i  ( A (,) +oo ) ) )  +  ( vol* `  ( x  \  ( A (,) +oo ) ) ) )  e.  RR )
52 simprr 796 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  ( x  C_  RR  /\  ( vol* `  x
)  e.  RR ) )  ->  ( vol* `  x )  e.  RR )
53 alrple 12037 . . . . . . . . 9  |-  ( ( ( ( vol* `  ( x  i^i  ( A (,) +oo ) ) )  +  ( vol* `  ( x  \  ( A (,) +oo ) ) ) )  e.  RR  /\  ( vol* `  x )  e.  RR )  -> 
( ( ( vol* `  ( x  i^i  ( A (,) +oo ) ) )  +  ( vol* `  ( x  \  ( A (,) +oo ) ) ) )  <_  ( vol* `  x )  <->  A. y  e.  RR+  (
( vol* `  ( x  i^i  ( A (,) +oo ) ) )  +  ( vol* `  ( x  \  ( A (,) +oo ) ) ) )  <_  ( ( vol* `  x )  +  y ) ) )
5451, 52, 53syl2anc 693 . . . . . . . 8  |-  ( ( A  e.  RR  /\  ( x  C_  RR  /\  ( vol* `  x
)  e.  RR ) )  ->  ( (
( vol* `  ( x  i^i  ( A (,) +oo ) ) )  +  ( vol* `  ( x  \  ( A (,) +oo ) ) ) )  <_  ( vol* `  x )  <->  A. y  e.  RR+  ( ( vol* `  ( x  i^i  ( A (,) +oo ) ) )  +  ( vol* `  ( x  \  ( A (,) +oo ) ) ) )  <_  (
( vol* `  x )  +  y ) ) )
5542, 54mpbird 247 . . . . . . 7  |-  ( ( A  e.  RR  /\  ( x  C_  RR  /\  ( vol* `  x
)  e.  RR ) )  ->  ( ( vol* `  ( x  i^i  ( A (,) +oo ) ) )  +  ( vol* `  ( x  \  ( A (,) +oo ) ) ) )  <_  ( vol* `  x ) )
5655expr 643 . . . . . 6  |-  ( ( A  e.  RR  /\  x  C_  RR )  -> 
( ( vol* `  x )  e.  RR  ->  ( ( vol* `  ( x  i^i  ( A (,) +oo ) ) )  +  ( vol* `  ( x  \  ( A (,) +oo ) ) ) )  <_  ( vol* `  x ) ) )
574, 56sylan2 491 . . . . 5  |-  ( ( A  e.  RR  /\  x  e.  ~P RR )  ->  ( ( vol* `  x )  e.  RR  ->  ( ( vol* `  ( x  i^i  ( A (,) +oo ) ) )  +  ( vol* `  ( x  \  ( A (,) +oo ) ) ) )  <_  ( vol* `  x ) ) )
5857ralrimiva 2966 . . . 4  |-  ( A  e.  RR  ->  A. x  e.  ~P  RR ( ( vol* `  x
)  e.  RR  ->  ( ( vol* `  ( x  i^i  ( A (,) +oo ) ) )  +  ( vol* `  ( x  \  ( A (,) +oo ) ) ) )  <_  ( vol* `  x ) ) )
59 ismbl2 23295 . . . 4  |-  ( ( A (,) +oo )  e.  dom  vol  <->  ( ( A (,) +oo )  C_  RR  /\  A. x  e. 
~P  RR ( ( vol* `  x
)  e.  RR  ->  ( ( vol* `  ( x  i^i  ( A (,) +oo ) ) )  +  ( vol* `  ( x  \  ( A (,) +oo ) ) ) )  <_  ( vol* `  x ) ) ) )
603, 58, 59sylanbrc 698 . . 3  |-  ( A  e.  RR  ->  ( A (,) +oo )  e. 
dom  vol )
61 oveq1 6657 . . . . 5  |-  ( A  = +oo  ->  ( A (,) +oo )  =  ( +oo (,) +oo ) )
62 iooid 12203 . . . . 5  |-  ( +oo (,) +oo )  =  (/)
6361, 62syl6eq 2672 . . . 4  |-  ( A  = +oo  ->  ( A (,) +oo )  =  (/) )
64 0mbl 23307 . . . 4  |-  (/)  e.  dom  vol
6563, 64syl6eqel 2709 . . 3  |-  ( A  = +oo  ->  ( A (,) +oo )  e. 
dom  vol )
66 oveq1 6657 . . . . 5  |-  ( A  = -oo  ->  ( A (,) +oo )  =  ( -oo (,) +oo ) )
67 ioomax 12248 . . . . 5  |-  ( -oo (,) +oo )  =  RR
6866, 67syl6eq 2672 . . . 4  |-  ( A  = -oo  ->  ( A (,) +oo )  =  RR )
69 rembl 23308 . . . 4  |-  RR  e.  dom  vol
7068, 69syl6eqel 2709 . . 3  |-  ( A  = -oo  ->  ( A (,) +oo )  e. 
dom  vol )
7160, 65, 703jaoi 1391 . 2  |-  ( ( A  e.  RR  \/  A  = +oo  \/  A  = -oo )  ->  ( A (,) +oo )  e. 
dom  vol )
721, 71sylbi 207 1  |-  ( A  e.  RR*  ->  ( A (,) +oo )  e. 
dom  vol )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    \/ w3o 1036    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913    \ cdif 3571    i^i cin 3573    C_ wss 3574   (/)c0 3915   ifcif 4086   ~Pcpw 4158   <.cop 4183   U.cuni 4436   class class class wbr 4653    |-> cmpt 4729    X. cxp 5112   dom cdm 5114   ran crn 5115    o. ccom 5118   -->wf 5884   ` cfv 5888  (class class class)co 6650   1stc1st 7166   2ndc2nd 7167    ^m cmap 7857   supcsup 8346   RRcr 9935   1c1 9937    + caddc 9939   +oocpnf 10071   -oocmnf 10072   RR*cxr 10073    < clt 10074    <_ cle 10075    - cmin 10266   NNcn 11020   RR+crp 11832   (,)cioo 12175    seqcseq 12801   abscabs 13974   vol*covol 23231   volcvol 23232
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-xadd 11947  df-ioo 12179  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-rlim 14220  df-sum 14417  df-xmet 19739  df-met 19740  df-ovol 23233  df-vol 23234
This theorem is referenced by:  icombl1  23331
  Copyright terms: Public domain W3C validator