MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isf32lem1 Structured version   Visualization version   Unicode version

Theorem isf32lem1 9175
Description: Lemma for isfin3-2 9189. Derive weak ordering property. (Contributed by Stefan O'Rear, 5-Nov-2014.)
Hypotheses
Ref Expression
isf32lem.a  |-  ( ph  ->  F : om --> ~P G
)
isf32lem.b  |-  ( ph  ->  A. x  e.  om  ( F `  suc  x
)  C_  ( F `  x ) )
isf32lem.c  |-  ( ph  ->  -.  |^| ran  F  e. 
ran  F )
Assertion
Ref Expression
isf32lem1  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  ( B  C_  A  /\  ph ) )  -> 
( F `  A
)  C_  ( F `  B ) )
Distinct variable groups:    x, B    ph, x    x, A    x, F
Allowed substitution hint:    G( x)

Proof of Theorem isf32lem1
Dummy variables  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6191 . . . . 5  |-  ( a  =  B  ->  ( F `  a )  =  ( F `  B ) )
21sseq1d 3632 . . . 4  |-  ( a  =  B  ->  (
( F `  a
)  C_  ( F `  B )  <->  ( F `  B )  C_  ( F `  B )
) )
32imbi2d 330 . . 3  |-  ( a  =  B  ->  (
( ph  ->  ( F `
 a )  C_  ( F `  B ) )  <->  ( ph  ->  ( F `  B ) 
C_  ( F `  B ) ) ) )
4 fveq2 6191 . . . . 5  |-  ( a  =  b  ->  ( F `  a )  =  ( F `  b ) )
54sseq1d 3632 . . . 4  |-  ( a  =  b  ->  (
( F `  a
)  C_  ( F `  B )  <->  ( F `  b )  C_  ( F `  B )
) )
65imbi2d 330 . . 3  |-  ( a  =  b  ->  (
( ph  ->  ( F `
 a )  C_  ( F `  B ) )  <->  ( ph  ->  ( F `  b ) 
C_  ( F `  B ) ) ) )
7 fveq2 6191 . . . . 5  |-  ( a  =  suc  b  -> 
( F `  a
)  =  ( F `
 suc  b )
)
87sseq1d 3632 . . . 4  |-  ( a  =  suc  b  -> 
( ( F `  a )  C_  ( F `  B )  <->  ( F `  suc  b
)  C_  ( F `  B ) ) )
98imbi2d 330 . . 3  |-  ( a  =  suc  b  -> 
( ( ph  ->  ( F `  a ) 
C_  ( F `  B ) )  <->  ( ph  ->  ( F `  suc  b )  C_  ( F `  B )
) ) )
10 fveq2 6191 . . . . 5  |-  ( a  =  A  ->  ( F `  a )  =  ( F `  A ) )
1110sseq1d 3632 . . . 4  |-  ( a  =  A  ->  (
( F `  a
)  C_  ( F `  B )  <->  ( F `  A )  C_  ( F `  B )
) )
1211imbi2d 330 . . 3  |-  ( a  =  A  ->  (
( ph  ->  ( F `
 a )  C_  ( F `  B ) )  <->  ( ph  ->  ( F `  A ) 
C_  ( F `  B ) ) ) )
13 ssid 3624 . . . 4  |-  ( F `
 B )  C_  ( F `  B )
14132a1i 12 . . 3  |-  ( B  e.  om  ->  ( ph  ->  ( F `  B )  C_  ( F `  B )
) )
15 isf32lem.b . . . . . . 7  |-  ( ph  ->  A. x  e.  om  ( F `  suc  x
)  C_  ( F `  x ) )
16 suceq 5790 . . . . . . . . . 10  |-  ( x  =  b  ->  suc  x  =  suc  b )
1716fveq2d 6195 . . . . . . . . 9  |-  ( x  =  b  ->  ( F `  suc  x )  =  ( F `  suc  b ) )
18 fveq2 6191 . . . . . . . . 9  |-  ( x  =  b  ->  ( F `  x )  =  ( F `  b ) )
1917, 18sseq12d 3634 . . . . . . . 8  |-  ( x  =  b  ->  (
( F `  suc  x )  C_  ( F `  x )  <->  ( F `  suc  b
)  C_  ( F `  b ) ) )
2019rspcv 3305 . . . . . . 7  |-  ( b  e.  om  ->  ( A. x  e.  om  ( F `  suc  x
)  C_  ( F `  x )  ->  ( F `  suc  b ) 
C_  ( F `  b ) ) )
2115, 20syl5 34 . . . . . 6  |-  ( b  e.  om  ->  ( ph  ->  ( F `  suc  b )  C_  ( F `  b )
) )
2221ad2antrr 762 . . . . 5  |-  ( ( ( b  e.  om  /\  B  e.  om )  /\  B  C_  b )  ->  ( ph  ->  ( F `  suc  b
)  C_  ( F `  b ) ) )
23 sstr2 3610 . . . . 5  |-  ( ( F `  suc  b
)  C_  ( F `  b )  ->  (
( F `  b
)  C_  ( F `  B )  ->  ( F `  suc  b ) 
C_  ( F `  B ) ) )
2422, 23syl6 35 . . . 4  |-  ( ( ( b  e.  om  /\  B  e.  om )  /\  B  C_  b )  ->  ( ph  ->  ( ( F `  b
)  C_  ( F `  B )  ->  ( F `  suc  b ) 
C_  ( F `  B ) ) ) )
2524a2d 29 . . 3  |-  ( ( ( b  e.  om  /\  B  e.  om )  /\  B  C_  b )  ->  ( ( ph  ->  ( F `  b
)  C_  ( F `  B ) )  -> 
( ph  ->  ( F `
 suc  b )  C_  ( F `  B
) ) ) )
263, 6, 9, 12, 14, 25findsg 7093 . 2  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  B  C_  A )  ->  ( ph  ->  ( F `  A ) 
C_  ( F `  B ) ) )
2726impr 649 1  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  ( B  C_  A  /\  ph ) )  -> 
( F `  A
)  C_  ( F `  B ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912    C_ wss 3574   ~Pcpw 4158   |^|cint 4475   ran crn 5115   suc csuc 5725   -->wf 5884   ` cfv 5888   omcom 7065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-tr 4753  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fv 5896  df-om 7066
This theorem is referenced by:  isf32lem2  9176  isf32lem3  9177
  Copyright terms: Public domain W3C validator