| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isf32lem4 | Structured version Visualization version Unicode version | ||
| Description: Lemma for isfin3-2 9189. Being a chain, difference sets are disjoint. (Contributed by Stefan O'Rear, 5-Nov-2014.) |
| Ref | Expression |
|---|---|
| isf32lem.a |
|
| isf32lem.b |
|
| isf32lem.c |
|
| Ref | Expression |
|---|---|
| isf32lem4 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simplrr 801 |
. . 3
| |
| 2 | simplrl 800 |
. . 3
| |
| 3 | simpr 477 |
. . 3
| |
| 4 | simplll 798 |
. . 3
| |
| 5 | incom 3805 |
. . . 4
| |
| 6 | isf32lem.a |
. . . . 5
| |
| 7 | isf32lem.b |
. . . . 5
| |
| 8 | isf32lem.c |
. . . . 5
| |
| 9 | 6, 7, 8 | isf32lem3 9177 |
. . . 4
|
| 10 | 5, 9 | syl5eq 2668 |
. . 3
|
| 11 | 1, 2, 3, 4, 10 | syl22anc 1327 |
. 2
|
| 12 | simplrl 800 |
. . 3
| |
| 13 | simplrr 801 |
. . 3
| |
| 14 | simpr 477 |
. . 3
| |
| 15 | simplll 798 |
. . 3
| |
| 16 | 6, 7, 8 | isf32lem3 9177 |
. . 3
|
| 17 | 12, 13, 14, 15, 16 | syl22anc 1327 |
. 2
|
| 18 | simplr 792 |
. . 3
| |
| 19 | nnord 7073 |
. . . . . 6
| |
| 20 | nnord 7073 |
. . . . . 6
| |
| 21 | ordtri3 5759 |
. . . . . 6
| |
| 22 | 19, 20, 21 | syl2an 494 |
. . . . 5
|
| 23 | 22 | adantl 482 |
. . . 4
|
| 24 | 23 | necon2abid 2836 |
. . 3
|
| 25 | 18, 24 | mpbird 247 |
. 2
|
| 26 | 11, 17, 25 | mpjaodan 827 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-tr 4753 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fv 5896 df-om 7066 |
| This theorem is referenced by: isf32lem7 9181 |
| Copyright terms: Public domain | W3C validator |