MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isf32lem4 Structured version   Visualization version   Unicode version

Theorem isf32lem4 9178
Description: Lemma for isfin3-2 9189. Being a chain, difference sets are disjoint. (Contributed by Stefan O'Rear, 5-Nov-2014.)
Hypotheses
Ref Expression
isf32lem.a  |-  ( ph  ->  F : om --> ~P G
)
isf32lem.b  |-  ( ph  ->  A. x  e.  om  ( F `  suc  x
)  C_  ( F `  x ) )
isf32lem.c  |-  ( ph  ->  -.  |^| ran  F  e. 
ran  F )
Assertion
Ref Expression
isf32lem4  |-  ( ( ( ph  /\  A  =/=  B )  /\  ( A  e.  om  /\  B  e.  om ) )  -> 
( ( ( F `
 A )  \ 
( F `  suc  A ) )  i^i  (
( F `  B
)  \  ( F `  suc  B ) ) )  =  (/) )
Distinct variable groups:    x, B    ph, x    x, A    x, F
Allowed substitution hint:    G( x)

Proof of Theorem isf32lem4
StepHypRef Expression
1 simplrr 801 . . 3  |-  ( ( ( ( ph  /\  A  =/=  B )  /\  ( A  e.  om  /\  B  e.  om )
)  /\  A  e.  B )  ->  B  e.  om )
2 simplrl 800 . . 3  |-  ( ( ( ( ph  /\  A  =/=  B )  /\  ( A  e.  om  /\  B  e.  om )
)  /\  A  e.  B )  ->  A  e.  om )
3 simpr 477 . . 3  |-  ( ( ( ( ph  /\  A  =/=  B )  /\  ( A  e.  om  /\  B  e.  om )
)  /\  A  e.  B )  ->  A  e.  B )
4 simplll 798 . . 3  |-  ( ( ( ( ph  /\  A  =/=  B )  /\  ( A  e.  om  /\  B  e.  om )
)  /\  A  e.  B )  ->  ph )
5 incom 3805 . . . 4  |-  ( ( ( F `  A
)  \  ( F `  suc  A ) )  i^i  ( ( F `
 B )  \ 
( F `  suc  B ) ) )  =  ( ( ( F `
 B )  \ 
( F `  suc  B ) )  i^i  (
( F `  A
)  \  ( F `  suc  A ) ) )
6 isf32lem.a . . . . 5  |-  ( ph  ->  F : om --> ~P G
)
7 isf32lem.b . . . . 5  |-  ( ph  ->  A. x  e.  om  ( F `  suc  x
)  C_  ( F `  x ) )
8 isf32lem.c . . . . 5  |-  ( ph  ->  -.  |^| ran  F  e. 
ran  F )
96, 7, 8isf32lem3 9177 . . . 4  |-  ( ( ( B  e.  om  /\  A  e.  om )  /\  ( A  e.  B  /\  ph ) )  -> 
( ( ( F `
 B )  \ 
( F `  suc  B ) )  i^i  (
( F `  A
)  \  ( F `  suc  A ) ) )  =  (/) )
105, 9syl5eq 2668 . . 3  |-  ( ( ( B  e.  om  /\  A  e.  om )  /\  ( A  e.  B  /\  ph ) )  -> 
( ( ( F `
 A )  \ 
( F `  suc  A ) )  i^i  (
( F `  B
)  \  ( F `  suc  B ) ) )  =  (/) )
111, 2, 3, 4, 10syl22anc 1327 . 2  |-  ( ( ( ( ph  /\  A  =/=  B )  /\  ( A  e.  om  /\  B  e.  om )
)  /\  A  e.  B )  ->  (
( ( F `  A )  \  ( F `  suc  A ) )  i^i  ( ( F `  B ) 
\  ( F `  suc  B ) ) )  =  (/) )
12 simplrl 800 . . 3  |-  ( ( ( ( ph  /\  A  =/=  B )  /\  ( A  e.  om  /\  B  e.  om )
)  /\  B  e.  A )  ->  A  e.  om )
13 simplrr 801 . . 3  |-  ( ( ( ( ph  /\  A  =/=  B )  /\  ( A  e.  om  /\  B  e.  om )
)  /\  B  e.  A )  ->  B  e.  om )
14 simpr 477 . . 3  |-  ( ( ( ( ph  /\  A  =/=  B )  /\  ( A  e.  om  /\  B  e.  om )
)  /\  B  e.  A )  ->  B  e.  A )
15 simplll 798 . . 3  |-  ( ( ( ( ph  /\  A  =/=  B )  /\  ( A  e.  om  /\  B  e.  om )
)  /\  B  e.  A )  ->  ph )
166, 7, 8isf32lem3 9177 . . 3  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  ( B  e.  A  /\  ph ) )  -> 
( ( ( F `
 A )  \ 
( F `  suc  A ) )  i^i  (
( F `  B
)  \  ( F `  suc  B ) ) )  =  (/) )
1712, 13, 14, 15, 16syl22anc 1327 . 2  |-  ( ( ( ( ph  /\  A  =/=  B )  /\  ( A  e.  om  /\  B  e.  om )
)  /\  B  e.  A )  ->  (
( ( F `  A )  \  ( F `  suc  A ) )  i^i  ( ( F `  B ) 
\  ( F `  suc  B ) ) )  =  (/) )
18 simplr 792 . . 3  |-  ( ( ( ph  /\  A  =/=  B )  /\  ( A  e.  om  /\  B  e.  om ) )  ->  A  =/=  B )
19 nnord 7073 . . . . . 6  |-  ( A  e.  om  ->  Ord  A )
20 nnord 7073 . . . . . 6  |-  ( B  e.  om  ->  Ord  B )
21 ordtri3 5759 . . . . . 6  |-  ( ( Ord  A  /\  Ord  B )  ->  ( A  =  B  <->  -.  ( A  e.  B  \/  B  e.  A ) ) )
2219, 20, 21syl2an 494 . . . . 5  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  =  B  <->  -.  ( A  e.  B  \/  B  e.  A
) ) )
2322adantl 482 . . . 4  |-  ( ( ( ph  /\  A  =/=  B )  /\  ( A  e.  om  /\  B  e.  om ) )  -> 
( A  =  B  <->  -.  ( A  e.  B  \/  B  e.  A
) ) )
2423necon2abid 2836 . . 3  |-  ( ( ( ph  /\  A  =/=  B )  /\  ( A  e.  om  /\  B  e.  om ) )  -> 
( ( A  e.  B  \/  B  e.  A )  <->  A  =/=  B ) )
2518, 24mpbird 247 . 2  |-  ( ( ( ph  /\  A  =/=  B )  /\  ( A  e.  om  /\  B  e.  om ) )  -> 
( A  e.  B  \/  B  e.  A
) )
2611, 17, 25mpjaodan 827 1  |-  ( ( ( ph  /\  A  =/=  B )  /\  ( A  e.  om  /\  B  e.  om ) )  -> 
( ( ( F `
 A )  \ 
( F `  suc  A ) )  i^i  (
( F `  B
)  \  ( F `  suc  B ) ) )  =  (/) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912    \ cdif 3571    i^i cin 3573    C_ wss 3574   (/)c0 3915   ~Pcpw 4158   |^|cint 4475   ran crn 5115   Ord word 5722   suc csuc 5725   -->wf 5884   ` cfv 5888   omcom 7065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-tr 4753  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fv 5896  df-om 7066
This theorem is referenced by:  isf32lem7  9181
  Copyright terms: Public domain W3C validator