MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  restlp Structured version   Visualization version   Unicode version

Theorem restlp 20987
Description: The limit points of a subset restrict naturally in a subspace. (Contributed by Mario Carneiro, 25-Dec-2016.)
Hypotheses
Ref Expression
restcls.1  |-  X  = 
U. J
restcls.2  |-  K  =  ( Jt  Y )
Assertion
Ref Expression
restlp  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  (
( limPt `  K ) `  S )  =  ( ( ( limPt `  J
) `  S )  i^i  Y ) )

Proof of Theorem restlp
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 simp3 1063 . . . . . . 7  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  S  C_  Y )
21ssdifssd 3748 . . . . . 6  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  ( S  \  { x }
)  C_  Y )
3 restcls.1 . . . . . . 7  |-  X  = 
U. J
4 restcls.2 . . . . . . 7  |-  K  =  ( Jt  Y )
53, 4restcls 20985 . . . . . 6  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  ( S  \  { x }
)  C_  Y )  ->  ( ( cls `  K
) `  ( S  \  { x } ) )  =  ( ( ( cls `  J
) `  ( S  \  { x } ) )  i^i  Y ) )
62, 5syld3an3 1371 . . . . 5  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  (
( cls `  K
) `  ( S  \  { x } ) )  =  ( ( ( cls `  J
) `  ( S  \  { x } ) )  i^i  Y ) )
76eleq2d 2687 . . . 4  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  (
x  e.  ( ( cls `  K ) `
 ( S  \  { x } ) )  <->  x  e.  (
( ( cls `  J
) `  ( S  \  { x } ) )  i^i  Y ) ) )
8 elin 3796 . . . 4  |-  ( x  e.  ( ( ( cls `  J ) `
 ( S  \  { x } ) )  i^i  Y )  <-> 
( x  e.  ( ( cls `  J
) `  ( S  \  { x } ) )  /\  x  e.  Y ) )
97, 8syl6bb 276 . . 3  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  (
x  e.  ( ( cls `  K ) `
 ( S  \  { x } ) )  <->  ( x  e.  ( ( cls `  J
) `  ( S  \  { x } ) )  /\  x  e.  Y ) ) )
10 simp1 1061 . . . . . . . 8  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  J  e.  Top )
113toptopon 20722 . . . . . . . 8  |-  ( J  e.  Top  <->  J  e.  (TopOn `  X ) )
1210, 11sylib 208 . . . . . . 7  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  J  e.  (TopOn `  X )
)
13 simp2 1062 . . . . . . 7  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  Y  C_  X )
14 resttopon 20965 . . . . . . 7  |-  ( ( J  e.  (TopOn `  X )  /\  Y  C_  X )  ->  ( Jt  Y )  e.  (TopOn `  Y ) )
1512, 13, 14syl2anc 693 . . . . . 6  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  ( Jt  Y )  e.  (TopOn `  Y ) )
164, 15syl5eqel 2705 . . . . 5  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  K  e.  (TopOn `  Y )
)
17 topontop 20718 . . . . 5  |-  ( K  e.  (TopOn `  Y
)  ->  K  e.  Top )
1816, 17syl 17 . . . 4  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  K  e.  Top )
19 toponuni 20719 . . . . . 6  |-  ( K  e.  (TopOn `  Y
)  ->  Y  =  U. K )
2016, 19syl 17 . . . . 5  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  Y  =  U. K )
211, 20sseqtrd 3641 . . . 4  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  S  C_ 
U. K )
22 eqid 2622 . . . . 5  |-  U. K  =  U. K
2322islp 20944 . . . 4  |-  ( ( K  e.  Top  /\  S  C_  U. K )  ->  ( x  e.  ( ( limPt `  K
) `  S )  <->  x  e.  ( ( cls `  K ) `  ( S  \  { x }
) ) ) )
2418, 21, 23syl2anc 693 . . 3  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  (
x  e.  ( (
limPt `  K ) `  S )  <->  x  e.  ( ( cls `  K
) `  ( S  \  { x } ) ) ) )
25 elin 3796 . . . 4  |-  ( x  e.  ( ( (
limPt `  J ) `  S )  i^i  Y
)  <->  ( x  e.  ( ( limPt `  J
) `  S )  /\  x  e.  Y
) )
261, 13sstrd 3613 . . . . . 6  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  S  C_  X )
273islp 20944 . . . . . 6  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( x  e.  ( ( limPt `  J ) `  S )  <->  x  e.  ( ( cls `  J
) `  ( S  \  { x } ) ) ) )
2810, 26, 27syl2anc 693 . . . . 5  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  (
x  e.  ( (
limPt `  J ) `  S )  <->  x  e.  ( ( cls `  J
) `  ( S  \  { x } ) ) ) )
2928anbi1d 741 . . . 4  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  (
( x  e.  ( ( limPt `  J ) `  S )  /\  x  e.  Y )  <->  ( x  e.  ( ( cls `  J
) `  ( S  \  { x } ) )  /\  x  e.  Y ) ) )
3025, 29syl5bb 272 . . 3  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  (
x  e.  ( ( ( limPt `  J ) `  S )  i^i  Y
)  <->  ( x  e.  ( ( cls `  J
) `  ( S  \  { x } ) )  /\  x  e.  Y ) ) )
319, 24, 303bitr4d 300 . 2  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  (
x  e.  ( (
limPt `  K ) `  S )  <->  x  e.  ( ( ( limPt `  J ) `  S
)  i^i  Y )
) )
3231eqrdv 2620 1  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  (
( limPt `  K ) `  S )  =  ( ( ( limPt `  J
) `  S )  i^i  Y ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    \ cdif 3571    i^i cin 3573    C_ wss 3574   {csn 4177   U.cuni 4436   ` cfv 5888  (class class class)co 6650   ↾t crest 16081   Topctop 20698  TopOnctopon 20715   clsccl 20822   limPtclp 20938
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-oadd 7564  df-er 7742  df-en 7956  df-fin 7959  df-fi 8317  df-rest 16083  df-topgen 16104  df-top 20699  df-topon 20716  df-bases 20750  df-cld 20823  df-cls 20825  df-lp 20940
This theorem is referenced by:  restperf  20988  lptioo2cn  39877  lptioo1cn  39878  limclner  39883  fourierdlem42  40366
  Copyright terms: Public domain W3C validator