| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > islssd | Structured version Visualization version Unicode version | ||
| Description: Properties that determine a subspace of a left module or left vector space. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 8-Jan-2015.) |
| Ref | Expression |
|---|---|
| islssd.f |
|
| islssd.b |
|
| islssd.v |
|
| islssd.p |
|
| islssd.t |
|
| islssd.s |
|
| islssd.u |
|
| islssd.z |
|
| islssd.c |
|
| Ref | Expression |
|---|---|
| islssd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | islssd.u |
. . . 4
| |
| 2 | islssd.v |
. . . 4
| |
| 3 | 1, 2 | sseqtrd 3641 |
. . 3
|
| 4 | islssd.z |
. . 3
| |
| 5 | islssd.c |
. . . . . . . . 9
| |
| 6 | 5 | 3exp2 1285 |
. . . . . . . 8
|
| 7 | 6 | imp43 621 |
. . . . . . 7
|
| 8 | 7 | ralrimivva 2971 |
. . . . . 6
|
| 9 | 8 | ex 450 |
. . . . 5
|
| 10 | islssd.b |
. . . . . . 7
| |
| 11 | islssd.f |
. . . . . . . 8
| |
| 12 | 11 | fveq2d 6195 |
. . . . . . 7
|
| 13 | 10, 12 | eqtrd 2656 |
. . . . . 6
|
| 14 | 13 | eleq2d 2687 |
. . . . 5
|
| 15 | islssd.p |
. . . . . . . . 9
| |
| 16 | 15 | oveqd 6667 |
. . . . . . . 8
|
| 17 | islssd.t |
. . . . . . . . . 10
| |
| 18 | 17 | oveqd 6667 |
. . . . . . . . 9
|
| 19 | 18 | oveq1d 6665 |
. . . . . . . 8
|
| 20 | 16, 19 | eqtrd 2656 |
. . . . . . 7
|
| 21 | 20 | eleq1d 2686 |
. . . . . 6
|
| 22 | 21 | 2ralbidv 2989 |
. . . . 5
|
| 23 | 9, 14, 22 | 3imtr3d 282 |
. . . 4
|
| 24 | 23 | ralrimiv 2965 |
. . 3
|
| 25 | eqid 2622 |
. . . 4
| |
| 26 | eqid 2622 |
. . . 4
| |
| 27 | eqid 2622 |
. . . 4
| |
| 28 | eqid 2622 |
. . . 4
| |
| 29 | eqid 2622 |
. . . 4
| |
| 30 | eqid 2622 |
. . . 4
| |
| 31 | 25, 26, 27, 28, 29, 30 | islss 18935 |
. . 3
|
| 32 | 3, 4, 24, 31 | syl3anbrc 1246 |
. 2
|
| 33 | islssd.s |
. 2
| |
| 34 | 32, 33 | eleqtrrd 2704 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-iota 5851 df-fun 5890 df-fv 5896 df-ov 6653 df-lss 18933 |
| This theorem is referenced by: lss1 18939 lsssn0 18948 islss3 18959 lss1d 18963 lssintcl 18964 lspsolvlem 19142 lbsextlem2 19159 mpllsslem 19435 scmatlss 20331 dialss 36335 diblss 36459 diclss 36482 lincolss 42223 |
| Copyright terms: Public domain | W3C validator |