![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lssss | Structured version Visualization version Unicode version |
Description: A subspace is a set of vectors. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 8-Jan-2015.) |
Ref | Expression |
---|---|
lssss.v |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
lssss.s |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
lssss |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2622 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | eqid 2622 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | lssss.v |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | eqid 2622 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | eqid 2622 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
6 | lssss.s |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
7 | 1, 2, 3, 4, 5, 6 | islss 18935 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
8 | 7 | simp1bi 1076 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-iota 5851 df-fun 5890 df-fv 5896 df-ov 6653 df-lss 18933 |
This theorem is referenced by: lssel 18938 lssuni 18940 00lss 18942 lsssubg 18957 islss3 18959 lsslss 18961 lssintcl 18964 lssmre 18966 lssacs 18967 lspid 18982 lspssv 18983 lspssp 18988 lsslsp 19015 lmhmima 19047 reslmhm 19052 lsmsp 19086 pj1lmhm 19100 lsppratlem2 19148 lsppratlem3 19149 lsppratlem4 19150 lspprat 19153 lbsextlem3 19160 lidlss 19210 ocvin 20018 pjdm2 20055 pjff 20056 pjf2 20058 pjfo 20059 pjcss 20060 frlmgsum 20111 frlmsplit2 20112 lsslindf 20169 lsslinds 20170 lssbn 23148 minveclem1 23195 minveclem2 23197 minveclem3a 23198 minveclem3b 23199 minveclem3 23200 minveclem4a 23201 minveclem4b 23202 minveclem4 23203 minveclem6 23205 minveclem7 23206 pjthlem1 23208 pjthlem2 23209 pjth 23210 islshpsm 34267 lshpnelb 34271 lshpnel2N 34272 lshpcmp 34275 lsatssv 34285 lssats 34299 lpssat 34300 lssatle 34302 lssat 34303 islshpcv 34340 lkrssv 34383 lkrlsp 34389 dvhopellsm 36406 dvadiaN 36417 dihss 36540 dihrnss 36567 dochord2N 36660 dochord3 36661 dihoml4 36666 dochsat 36672 dochshpncl 36673 dochnoncon 36680 djhlsmcl 36703 dihjat1lem 36717 dochsatshp 36740 dochsatshpb 36741 dochshpsat 36743 dochexmidlem2 36750 dochexmidlem5 36753 dochexmidlem6 36754 dochexmidlem7 36755 dochexmidlem8 36756 lclkrlem2p 36811 lclkrlem2v 36817 lcfrlem5 36835 lcfr 36874 mapdpglem17N 36977 mapdpglem18 36978 mapdpglem21 36981 islssfg 37640 islssfg2 37641 lnmlsslnm 37651 kercvrlsm 37653 lnmepi 37655 filnm 37660 gsumlsscl 42164 lincellss 42215 ellcoellss 42224 |
Copyright terms: Public domain | W3C validator |