MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fuccocl Structured version   Visualization version   Unicode version

Theorem fuccocl 16624
Description: The composition of two natural transformations is a natural transformation. Remark 6.14(a) in [Adamek] p. 87. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
fuccocl.q  |-  Q  =  ( C FuncCat  D )
fuccocl.n  |-  N  =  ( C Nat  D )
fuccocl.x  |-  .xb  =  (comp `  Q )
fuccocl.r  |-  ( ph  ->  R  e.  ( F N G ) )
fuccocl.s  |-  ( ph  ->  S  e.  ( G N H ) )
Assertion
Ref Expression
fuccocl  |-  ( ph  ->  ( S ( <. F ,  G >.  .xb 
H ) R )  e.  ( F N H ) )

Proof of Theorem fuccocl
Dummy variables  x  f  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fuccocl.q . . . 4  |-  Q  =  ( C FuncCat  D )
2 fuccocl.n . . . 4  |-  N  =  ( C Nat  D )
3 eqid 2622 . . . 4  |-  ( Base `  C )  =  (
Base `  C )
4 eqid 2622 . . . 4  |-  (comp `  D )  =  (comp `  D )
5 fuccocl.x . . . 4  |-  .xb  =  (comp `  Q )
6 fuccocl.r . . . 4  |-  ( ph  ->  R  e.  ( F N G ) )
7 fuccocl.s . . . 4  |-  ( ph  ->  S  e.  ( G N H ) )
81, 2, 3, 4, 5, 6, 7fucco 16622 . . 3  |-  ( ph  ->  ( S ( <. F ,  G >.  .xb 
H ) R )  =  ( x  e.  ( Base `  C
)  |->  ( ( S `
 x ) (
<. ( ( 1st `  F
) `  x ) ,  ( ( 1st `  G ) `  x
) >. (comp `  D
) ( ( 1st `  H ) `  x
) ) ( R `
 x ) ) ) )
9 eqid 2622 . . . . . 6  |-  ( Base `  D )  =  (
Base `  D )
10 eqid 2622 . . . . . 6  |-  ( Hom  `  D )  =  ( Hom  `  D )
112natrcl 16610 . . . . . . . . . . 11  |-  ( R  e.  ( F N G )  ->  ( F  e.  ( C  Func  D )  /\  G  e.  ( C  Func  D
) ) )
126, 11syl 17 . . . . . . . . . 10  |-  ( ph  ->  ( F  e.  ( C  Func  D )  /\  G  e.  ( C  Func  D ) ) )
1312simpld 475 . . . . . . . . 9  |-  ( ph  ->  F  e.  ( C 
Func  D ) )
14 funcrcl 16523 . . . . . . . . 9  |-  ( F  e.  ( C  Func  D )  ->  ( C  e.  Cat  /\  D  e. 
Cat ) )
1513, 14syl 17 . . . . . . . 8  |-  ( ph  ->  ( C  e.  Cat  /\  D  e.  Cat )
)
1615simprd 479 . . . . . . 7  |-  ( ph  ->  D  e.  Cat )
1716adantr 481 . . . . . 6  |-  ( (
ph  /\  x  e.  ( Base `  C )
)  ->  D  e.  Cat )
18 relfunc 16522 . . . . . . . . 9  |-  Rel  ( C  Func  D )
19 1st2ndbr 7217 . . . . . . . . 9  |-  ( ( Rel  ( C  Func  D )  /\  F  e.  ( C  Func  D
) )  ->  ( 1st `  F ) ( C  Func  D )
( 2nd `  F
) )
2018, 13, 19sylancr 695 . . . . . . . 8  |-  ( ph  ->  ( 1st `  F
) ( C  Func  D ) ( 2nd `  F
) )
213, 9, 20funcf1 16526 . . . . . . 7  |-  ( ph  ->  ( 1st `  F
) : ( Base `  C ) --> ( Base `  D ) )
2221ffvelrnda 6359 . . . . . 6  |-  ( (
ph  /\  x  e.  ( Base `  C )
)  ->  ( ( 1st `  F ) `  x )  e.  (
Base `  D )
)
232natrcl 16610 . . . . . . . . . . 11  |-  ( S  e.  ( G N H )  ->  ( G  e.  ( C  Func  D )  /\  H  e.  ( C  Func  D
) ) )
247, 23syl 17 . . . . . . . . . 10  |-  ( ph  ->  ( G  e.  ( C  Func  D )  /\  H  e.  ( C  Func  D ) ) )
2524simpld 475 . . . . . . . . 9  |-  ( ph  ->  G  e.  ( C 
Func  D ) )
26 1st2ndbr 7217 . . . . . . . . 9  |-  ( ( Rel  ( C  Func  D )  /\  G  e.  ( C  Func  D
) )  ->  ( 1st `  G ) ( C  Func  D )
( 2nd `  G
) )
2718, 25, 26sylancr 695 . . . . . . . 8  |-  ( ph  ->  ( 1st `  G
) ( C  Func  D ) ( 2nd `  G
) )
283, 9, 27funcf1 16526 . . . . . . 7  |-  ( ph  ->  ( 1st `  G
) : ( Base `  C ) --> ( Base `  D ) )
2928ffvelrnda 6359 . . . . . 6  |-  ( (
ph  /\  x  e.  ( Base `  C )
)  ->  ( ( 1st `  G ) `  x )  e.  (
Base `  D )
)
3024simprd 479 . . . . . . . . 9  |-  ( ph  ->  H  e.  ( C 
Func  D ) )
31 1st2ndbr 7217 . . . . . . . . 9  |-  ( ( Rel  ( C  Func  D )  /\  H  e.  ( C  Func  D
) )  ->  ( 1st `  H ) ( C  Func  D )
( 2nd `  H
) )
3218, 30, 31sylancr 695 . . . . . . . 8  |-  ( ph  ->  ( 1st `  H
) ( C  Func  D ) ( 2nd `  H
) )
333, 9, 32funcf1 16526 . . . . . . 7  |-  ( ph  ->  ( 1st `  H
) : ( Base `  C ) --> ( Base `  D ) )
3433ffvelrnda 6359 . . . . . 6  |-  ( (
ph  /\  x  e.  ( Base `  C )
)  ->  ( ( 1st `  H ) `  x )  e.  (
Base `  D )
)
352, 6nat1st2nd 16611 . . . . . . . 8  |-  ( ph  ->  R  e.  ( <.
( 1st `  F
) ,  ( 2nd `  F ) >. N <. ( 1st `  G ) ,  ( 2nd `  G
) >. ) )
3635adantr 481 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( Base `  C )
)  ->  R  e.  ( <. ( 1st `  F
) ,  ( 2nd `  F ) >. N <. ( 1st `  G ) ,  ( 2nd `  G
) >. ) )
37 simpr 477 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( Base `  C )
)  ->  x  e.  ( Base `  C )
)
382, 36, 3, 10, 37natcl 16613 . . . . . 6  |-  ( (
ph  /\  x  e.  ( Base `  C )
)  ->  ( R `  x )  e.  ( ( ( 1st `  F
) `  x )
( Hom  `  D ) ( ( 1st `  G
) `  x )
) )
392, 7nat1st2nd 16611 . . . . . . . 8  |-  ( ph  ->  S  e.  ( <.
( 1st `  G
) ,  ( 2nd `  G ) >. N <. ( 1st `  H ) ,  ( 2nd `  H
) >. ) )
4039adantr 481 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( Base `  C )
)  ->  S  e.  ( <. ( 1st `  G
) ,  ( 2nd `  G ) >. N <. ( 1st `  H ) ,  ( 2nd `  H
) >. ) )
412, 40, 3, 10, 37natcl 16613 . . . . . 6  |-  ( (
ph  /\  x  e.  ( Base `  C )
)  ->  ( S `  x )  e.  ( ( ( 1st `  G
) `  x )
( Hom  `  D ) ( ( 1st `  H
) `  x )
) )
429, 10, 4, 17, 22, 29, 34, 38, 41catcocl 16346 . . . . 5  |-  ( (
ph  /\  x  e.  ( Base `  C )
)  ->  ( ( S `  x )
( <. ( ( 1st `  F ) `  x
) ,  ( ( 1st `  G ) `
 x ) >.
(comp `  D )
( ( 1st `  H
) `  x )
) ( R `  x ) )  e.  ( ( ( 1st `  F ) `  x
) ( Hom  `  D
) ( ( 1st `  H ) `  x
) ) )
4342ralrimiva 2966 . . . 4  |-  ( ph  ->  A. x  e.  (
Base `  C )
( ( S `  x ) ( <.
( ( 1st `  F
) `  x ) ,  ( ( 1st `  G ) `  x
) >. (comp `  D
) ( ( 1st `  H ) `  x
) ) ( R `
 x ) )  e.  ( ( ( 1st `  F ) `
 x ) ( Hom  `  D )
( ( 1st `  H
) `  x )
) )
44 fvex 6201 . . . . 5  |-  ( Base `  C )  e.  _V
45 mptelixpg 7945 . . . . 5  |-  ( (
Base `  C )  e.  _V  ->  ( (
x  e.  ( Base `  C )  |->  ( ( S `  x ) ( <. ( ( 1st `  F ) `  x
) ,  ( ( 1st `  G ) `
 x ) >.
(comp `  D )
( ( 1st `  H
) `  x )
) ( R `  x ) ) )  e.  X_ x  e.  (
Base `  C )
( ( ( 1st `  F ) `  x
) ( Hom  `  D
) ( ( 1st `  H ) `  x
) )  <->  A. x  e.  ( Base `  C
) ( ( S `
 x ) (
<. ( ( 1st `  F
) `  x ) ,  ( ( 1st `  G ) `  x
) >. (comp `  D
) ( ( 1st `  H ) `  x
) ) ( R `
 x ) )  e.  ( ( ( 1st `  F ) `
 x ) ( Hom  `  D )
( ( 1st `  H
) `  x )
) ) )
4644, 45ax-mp 5 . . . 4  |-  ( ( x  e.  ( Base `  C )  |->  ( ( S `  x ) ( <. ( ( 1st `  F ) `  x
) ,  ( ( 1st `  G ) `
 x ) >.
(comp `  D )
( ( 1st `  H
) `  x )
) ( R `  x ) ) )  e.  X_ x  e.  (
Base `  C )
( ( ( 1st `  F ) `  x
) ( Hom  `  D
) ( ( 1st `  H ) `  x
) )  <->  A. x  e.  ( Base `  C
) ( ( S `
 x ) (
<. ( ( 1st `  F
) `  x ) ,  ( ( 1st `  G ) `  x
) >. (comp `  D
) ( ( 1st `  H ) `  x
) ) ( R `
 x ) )  e.  ( ( ( 1st `  F ) `
 x ) ( Hom  `  D )
( ( 1st `  H
) `  x )
) )
4743, 46sylibr 224 . . 3  |-  ( ph  ->  ( x  e.  (
Base `  C )  |->  ( ( S `  x ) ( <.
( ( 1st `  F
) `  x ) ,  ( ( 1st `  G ) `  x
) >. (comp `  D
) ( ( 1st `  H ) `  x
) ) ( R `
 x ) ) )  e.  X_ x  e.  ( Base `  C
) ( ( ( 1st `  F ) `
 x ) ( Hom  `  D )
( ( 1st `  H
) `  x )
) )
488, 47eqeltrd 2701 . 2  |-  ( ph  ->  ( S ( <. F ,  G >.  .xb 
H ) R )  e.  X_ x  e.  (
Base `  C )
( ( ( 1st `  F ) `  x
) ( Hom  `  D
) ( ( 1st `  H ) `  x
) ) )
4916adantr 481 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )  /\  f  e.  (
x ( Hom  `  C
) y ) ) )  ->  D  e.  Cat )
5021adantr 481 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )  /\  f  e.  (
x ( Hom  `  C
) y ) ) )  ->  ( 1st `  F ) : (
Base `  C ) --> ( Base `  D )
)
51 simpr1 1067 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )  /\  f  e.  (
x ( Hom  `  C
) y ) ) )  ->  x  e.  ( Base `  C )
)
5250, 51ffvelrnd 6360 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )  /\  f  e.  (
x ( Hom  `  C
) y ) ) )  ->  ( ( 1st `  F ) `  x )  e.  (
Base `  D )
)
53 simpr2 1068 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )  /\  f  e.  (
x ( Hom  `  C
) y ) ) )  ->  y  e.  ( Base `  C )
)
5450, 53ffvelrnd 6360 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )  /\  f  e.  (
x ( Hom  `  C
) y ) ) )  ->  ( ( 1st `  F ) `  y )  e.  (
Base `  D )
)
5528adantr 481 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )  /\  f  e.  (
x ( Hom  `  C
) y ) ) )  ->  ( 1st `  G ) : (
Base `  C ) --> ( Base `  D )
)
5655, 53ffvelrnd 6360 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )  /\  f  e.  (
x ( Hom  `  C
) y ) ) )  ->  ( ( 1st `  G ) `  y )  e.  (
Base `  D )
)
57 eqid 2622 . . . . . . . 8  |-  ( Hom  `  C )  =  ( Hom  `  C )
5820adantr 481 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )  /\  f  e.  (
x ( Hom  `  C
) y ) ) )  ->  ( 1st `  F ) ( C 
Func  D ) ( 2nd `  F ) )
593, 57, 10, 58, 51, 53funcf2 16528 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )  /\  f  e.  (
x ( Hom  `  C
) y ) ) )  ->  ( x
( 2nd `  F
) y ) : ( x ( Hom  `  C ) y ) --> ( ( ( 1st `  F ) `  x
) ( Hom  `  D
) ( ( 1st `  F ) `  y
) ) )
60 simpr3 1069 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )  /\  f  e.  (
x ( Hom  `  C
) y ) ) )  ->  f  e.  ( x ( Hom  `  C ) y ) )
6159, 60ffvelrnd 6360 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )  /\  f  e.  (
x ( Hom  `  C
) y ) ) )  ->  ( (
x ( 2nd `  F
) y ) `  f )  e.  ( ( ( 1st `  F
) `  x )
( Hom  `  D ) ( ( 1st `  F
) `  y )
) )
6235adantr 481 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )  /\  f  e.  (
x ( Hom  `  C
) y ) ) )  ->  R  e.  ( <. ( 1st `  F
) ,  ( 2nd `  F ) >. N <. ( 1st `  G ) ,  ( 2nd `  G
) >. ) )
632, 62, 3, 10, 53natcl 16613 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )  /\  f  e.  (
x ( Hom  `  C
) y ) ) )  ->  ( R `  y )  e.  ( ( ( 1st `  F
) `  y )
( Hom  `  D ) ( ( 1st `  G
) `  y )
) )
6433adantr 481 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )  /\  f  e.  (
x ( Hom  `  C
) y ) ) )  ->  ( 1st `  H ) : (
Base `  C ) --> ( Base `  D )
)
6564, 53ffvelrnd 6360 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )  /\  f  e.  (
x ( Hom  `  C
) y ) ) )  ->  ( ( 1st `  H ) `  y )  e.  (
Base `  D )
)
6639adantr 481 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )  /\  f  e.  (
x ( Hom  `  C
) y ) ) )  ->  S  e.  ( <. ( 1st `  G
) ,  ( 2nd `  G ) >. N <. ( 1st `  H ) ,  ( 2nd `  H
) >. ) )
672, 66, 3, 10, 53natcl 16613 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )  /\  f  e.  (
x ( Hom  `  C
) y ) ) )  ->  ( S `  y )  e.  ( ( ( 1st `  G
) `  y )
( Hom  `  D ) ( ( 1st `  H
) `  y )
) )
689, 10, 4, 49, 52, 54, 56, 61, 63, 65, 67catass 16347 . . . . 5  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )  /\  f  e.  (
x ( Hom  `  C
) y ) ) )  ->  ( (
( S `  y
) ( <. (
( 1st `  F
) `  y ) ,  ( ( 1st `  G ) `  y
) >. (comp `  D
) ( ( 1st `  H ) `  y
) ) ( R `
 y ) ) ( <. ( ( 1st `  F ) `  x
) ,  ( ( 1st `  F ) `
 y ) >.
(comp `  D )
( ( 1st `  H
) `  y )
) ( ( x ( 2nd `  F
) y ) `  f ) )  =  ( ( S `  y ) ( <.
( ( 1st `  F
) `  x ) ,  ( ( 1st `  G ) `  y
) >. (comp `  D
) ( ( 1st `  H ) `  y
) ) ( ( R `  y ) ( <. ( ( 1st `  F ) `  x
) ,  ( ( 1st `  F ) `
 y ) >.
(comp `  D )
( ( 1st `  G
) `  y )
) ( ( x ( 2nd `  F
) y ) `  f ) ) ) )
692, 62, 3, 57, 4, 51, 53, 60nati 16615 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )  /\  f  e.  (
x ( Hom  `  C
) y ) ) )  ->  ( ( R `  y )
( <. ( ( 1st `  F ) `  x
) ,  ( ( 1st `  F ) `
 y ) >.
(comp `  D )
( ( 1st `  G
) `  y )
) ( ( x ( 2nd `  F
) y ) `  f ) )  =  ( ( ( x ( 2nd `  G
) y ) `  f ) ( <.
( ( 1st `  F
) `  x ) ,  ( ( 1st `  G ) `  x
) >. (comp `  D
) ( ( 1st `  G ) `  y
) ) ( R `
 x ) ) )
7069oveq2d 6666 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )  /\  f  e.  (
x ( Hom  `  C
) y ) ) )  ->  ( ( S `  y )
( <. ( ( 1st `  F ) `  x
) ,  ( ( 1st `  G ) `
 y ) >.
(comp `  D )
( ( 1st `  H
) `  y )
) ( ( R `
 y ) (
<. ( ( 1st `  F
) `  x ) ,  ( ( 1st `  F ) `  y
) >. (comp `  D
) ( ( 1st `  G ) `  y
) ) ( ( x ( 2nd `  F
) y ) `  f ) ) )  =  ( ( S `
 y ) (
<. ( ( 1st `  F
) `  x ) ,  ( ( 1st `  G ) `  y
) >. (comp `  D
) ( ( 1st `  H ) `  y
) ) ( ( ( x ( 2nd `  G ) y ) `
 f ) (
<. ( ( 1st `  F
) `  x ) ,  ( ( 1st `  G ) `  x
) >. (comp `  D
) ( ( 1st `  G ) `  y
) ) ( R `
 x ) ) ) )
7155, 51ffvelrnd 6360 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )  /\  f  e.  (
x ( Hom  `  C
) y ) ) )  ->  ( ( 1st `  G ) `  x )  e.  (
Base `  D )
)
722, 62, 3, 10, 51natcl 16613 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )  /\  f  e.  (
x ( Hom  `  C
) y ) ) )  ->  ( R `  x )  e.  ( ( ( 1st `  F
) `  x )
( Hom  `  D ) ( ( 1st `  G
) `  x )
) )
7327adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )  /\  f  e.  (
x ( Hom  `  C
) y ) ) )  ->  ( 1st `  G ) ( C 
Func  D ) ( 2nd `  G ) )
743, 57, 10, 73, 51, 53funcf2 16528 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )  /\  f  e.  (
x ( Hom  `  C
) y ) ) )  ->  ( x
( 2nd `  G
) y ) : ( x ( Hom  `  C ) y ) --> ( ( ( 1st `  G ) `  x
) ( Hom  `  D
) ( ( 1st `  G ) `  y
) ) )
7574, 60ffvelrnd 6360 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )  /\  f  e.  (
x ( Hom  `  C
) y ) ) )  ->  ( (
x ( 2nd `  G
) y ) `  f )  e.  ( ( ( 1st `  G
) `  x )
( Hom  `  D ) ( ( 1st `  G
) `  y )
) )
769, 10, 4, 49, 52, 71, 56, 72, 75, 65, 67catass 16347 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )  /\  f  e.  (
x ( Hom  `  C
) y ) ) )  ->  ( (
( S `  y
) ( <. (
( 1st `  G
) `  x ) ,  ( ( 1st `  G ) `  y
) >. (comp `  D
) ( ( 1st `  H ) `  y
) ) ( ( x ( 2nd `  G
) y ) `  f ) ) (
<. ( ( 1st `  F
) `  x ) ,  ( ( 1st `  G ) `  x
) >. (comp `  D
) ( ( 1st `  H ) `  y
) ) ( R `
 x ) )  =  ( ( S `
 y ) (
<. ( ( 1st `  F
) `  x ) ,  ( ( 1st `  G ) `  y
) >. (comp `  D
) ( ( 1st `  H ) `  y
) ) ( ( ( x ( 2nd `  G ) y ) `
 f ) (
<. ( ( 1st `  F
) `  x ) ,  ( ( 1st `  G ) `  x
) >. (comp `  D
) ( ( 1st `  G ) `  y
) ) ( R `
 x ) ) ) )
772, 66, 3, 57, 4, 51, 53, 60nati 16615 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )  /\  f  e.  (
x ( Hom  `  C
) y ) ) )  ->  ( ( S `  y )
( <. ( ( 1st `  G ) `  x
) ,  ( ( 1st `  G ) `
 y ) >.
(comp `  D )
( ( 1st `  H
) `  y )
) ( ( x ( 2nd `  G
) y ) `  f ) )  =  ( ( ( x ( 2nd `  H
) y ) `  f ) ( <.
( ( 1st `  G
) `  x ) ,  ( ( 1st `  H ) `  x
) >. (comp `  D
) ( ( 1st `  H ) `  y
) ) ( S `
 x ) ) )
7877oveq1d 6665 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )  /\  f  e.  (
x ( Hom  `  C
) y ) ) )  ->  ( (
( S `  y
) ( <. (
( 1st `  G
) `  x ) ,  ( ( 1st `  G ) `  y
) >. (comp `  D
) ( ( 1st `  H ) `  y
) ) ( ( x ( 2nd `  G
) y ) `  f ) ) (
<. ( ( 1st `  F
) `  x ) ,  ( ( 1st `  G ) `  x
) >. (comp `  D
) ( ( 1st `  H ) `  y
) ) ( R `
 x ) )  =  ( ( ( ( x ( 2nd `  H ) y ) `
 f ) (
<. ( ( 1st `  G
) `  x ) ,  ( ( 1st `  H ) `  x
) >. (comp `  D
) ( ( 1st `  H ) `  y
) ) ( S `
 x ) ) ( <. ( ( 1st `  F ) `  x
) ,  ( ( 1st `  G ) `
 x ) >.
(comp `  D )
( ( 1st `  H
) `  y )
) ( R `  x ) ) )
7970, 76, 783eqtr2d 2662 . . . . 5  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )  /\  f  e.  (
x ( Hom  `  C
) y ) ) )  ->  ( ( S `  y )
( <. ( ( 1st `  F ) `  x
) ,  ( ( 1st `  G ) `
 y ) >.
(comp `  D )
( ( 1st `  H
) `  y )
) ( ( R `
 y ) (
<. ( ( 1st `  F
) `  x ) ,  ( ( 1st `  F ) `  y
) >. (comp `  D
) ( ( 1st `  G ) `  y
) ) ( ( x ( 2nd `  F
) y ) `  f ) ) )  =  ( ( ( ( x ( 2nd `  H ) y ) `
 f ) (
<. ( ( 1st `  G
) `  x ) ,  ( ( 1st `  H ) `  x
) >. (comp `  D
) ( ( 1st `  H ) `  y
) ) ( S `
 x ) ) ( <. ( ( 1st `  F ) `  x
) ,  ( ( 1st `  G ) `
 x ) >.
(comp `  D )
( ( 1st `  H
) `  y )
) ( R `  x ) ) )
8064, 51ffvelrnd 6360 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )  /\  f  e.  (
x ( Hom  `  C
) y ) ) )  ->  ( ( 1st `  H ) `  x )  e.  (
Base `  D )
)
812, 66, 3, 10, 51natcl 16613 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )  /\  f  e.  (
x ( Hom  `  C
) y ) ) )  ->  ( S `  x )  e.  ( ( ( 1st `  G
) `  x )
( Hom  `  D ) ( ( 1st `  H
) `  x )
) )
8232adantr 481 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )  /\  f  e.  (
x ( Hom  `  C
) y ) ) )  ->  ( 1st `  H ) ( C 
Func  D ) ( 2nd `  H ) )
833, 57, 10, 82, 51, 53funcf2 16528 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )  /\  f  e.  (
x ( Hom  `  C
) y ) ) )  ->  ( x
( 2nd `  H
) y ) : ( x ( Hom  `  C ) y ) --> ( ( ( 1st `  H ) `  x
) ( Hom  `  D
) ( ( 1st `  H ) `  y
) ) )
8483, 60ffvelrnd 6360 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )  /\  f  e.  (
x ( Hom  `  C
) y ) ) )  ->  ( (
x ( 2nd `  H
) y ) `  f )  e.  ( ( ( 1st `  H
) `  x )
( Hom  `  D ) ( ( 1st `  H
) `  y )
) )
859, 10, 4, 49, 52, 71, 80, 72, 81, 65, 84catass 16347 . . . . 5  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )  /\  f  e.  (
x ( Hom  `  C
) y ) ) )  ->  ( (
( ( x ( 2nd `  H ) y ) `  f
) ( <. (
( 1st `  G
) `  x ) ,  ( ( 1st `  H ) `  x
) >. (comp `  D
) ( ( 1st `  H ) `  y
) ) ( S `
 x ) ) ( <. ( ( 1st `  F ) `  x
) ,  ( ( 1st `  G ) `
 x ) >.
(comp `  D )
( ( 1st `  H
) `  y )
) ( R `  x ) )  =  ( ( ( x ( 2nd `  H
) y ) `  f ) ( <.
( ( 1st `  F
) `  x ) ,  ( ( 1st `  H ) `  x
) >. (comp `  D
) ( ( 1st `  H ) `  y
) ) ( ( S `  x ) ( <. ( ( 1st `  F ) `  x
) ,  ( ( 1st `  G ) `
 x ) >.
(comp `  D )
( ( 1st `  H
) `  x )
) ( R `  x ) ) ) )
8668, 79, 853eqtrd 2660 . . . 4  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )  /\  f  e.  (
x ( Hom  `  C
) y ) ) )  ->  ( (
( S `  y
) ( <. (
( 1st `  F
) `  y ) ,  ( ( 1st `  G ) `  y
) >. (comp `  D
) ( ( 1st `  H ) `  y
) ) ( R `
 y ) ) ( <. ( ( 1st `  F ) `  x
) ,  ( ( 1st `  F ) `
 y ) >.
(comp `  D )
( ( 1st `  H
) `  y )
) ( ( x ( 2nd `  F
) y ) `  f ) )  =  ( ( ( x ( 2nd `  H
) y ) `  f ) ( <.
( ( 1st `  F
) `  x ) ,  ( ( 1st `  H ) `  x
) >. (comp `  D
) ( ( 1st `  H ) `  y
) ) ( ( S `  x ) ( <. ( ( 1st `  F ) `  x
) ,  ( ( 1st `  G ) `
 x ) >.
(comp `  D )
( ( 1st `  H
) `  x )
) ( R `  x ) ) ) )
876adantr 481 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )  /\  f  e.  (
x ( Hom  `  C
) y ) ) )  ->  R  e.  ( F N G ) )
887adantr 481 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )  /\  f  e.  (
x ( Hom  `  C
) y ) ) )  ->  S  e.  ( G N H ) )
891, 2, 3, 4, 5, 87, 88, 53fuccoval 16623 . . . . 5  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )  /\  f  e.  (
x ( Hom  `  C
) y ) ) )  ->  ( ( S ( <. F ,  G >.  .xb  H ) R ) `  y )  =  ( ( S `
 y ) (
<. ( ( 1st `  F
) `  y ) ,  ( ( 1st `  G ) `  y
) >. (comp `  D
) ( ( 1st `  H ) `  y
) ) ( R `
 y ) ) )
9089oveq1d 6665 . . . 4  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )  /\  f  e.  (
x ( Hom  `  C
) y ) ) )  ->  ( (
( S ( <. F ,  G >.  .xb 
H ) R ) `
 y ) (
<. ( ( 1st `  F
) `  x ) ,  ( ( 1st `  F ) `  y
) >. (comp `  D
) ( ( 1st `  H ) `  y
) ) ( ( x ( 2nd `  F
) y ) `  f ) )  =  ( ( ( S `
 y ) (
<. ( ( 1st `  F
) `  y ) ,  ( ( 1st `  G ) `  y
) >. (comp `  D
) ( ( 1st `  H ) `  y
) ) ( R `
 y ) ) ( <. ( ( 1st `  F ) `  x
) ,  ( ( 1st `  F ) `
 y ) >.
(comp `  D )
( ( 1st `  H
) `  y )
) ( ( x ( 2nd `  F
) y ) `  f ) ) )
911, 2, 3, 4, 5, 87, 88, 51fuccoval 16623 . . . . 5  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )  /\  f  e.  (
x ( Hom  `  C
) y ) ) )  ->  ( ( S ( <. F ,  G >.  .xb  H ) R ) `  x )  =  ( ( S `
 x ) (
<. ( ( 1st `  F
) `  x ) ,  ( ( 1st `  G ) `  x
) >. (comp `  D
) ( ( 1st `  H ) `  x
) ) ( R `
 x ) ) )
9291oveq2d 6666 . . . 4  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )  /\  f  e.  (
x ( Hom  `  C
) y ) ) )  ->  ( (
( x ( 2nd `  H ) y ) `
 f ) (
<. ( ( 1st `  F
) `  x ) ,  ( ( 1st `  H ) `  x
) >. (comp `  D
) ( ( 1st `  H ) `  y
) ) ( ( S ( <. F ,  G >.  .xb  H ) R ) `  x ) )  =  ( ( ( x ( 2nd `  H ) y ) `
 f ) (
<. ( ( 1st `  F
) `  x ) ,  ( ( 1st `  H ) `  x
) >. (comp `  D
) ( ( 1st `  H ) `  y
) ) ( ( S `  x ) ( <. ( ( 1st `  F ) `  x
) ,  ( ( 1st `  G ) `
 x ) >.
(comp `  D )
( ( 1st `  H
) `  x )
) ( R `  x ) ) ) )
9386, 90, 923eqtr4d 2666 . . 3  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )  /\  f  e.  (
x ( Hom  `  C
) y ) ) )  ->  ( (
( S ( <. F ,  G >.  .xb 
H ) R ) `
 y ) (
<. ( ( 1st `  F
) `  x ) ,  ( ( 1st `  F ) `  y
) >. (comp `  D
) ( ( 1st `  H ) `  y
) ) ( ( x ( 2nd `  F
) y ) `  f ) )  =  ( ( ( x ( 2nd `  H
) y ) `  f ) ( <.
( ( 1st `  F
) `  x ) ,  ( ( 1st `  H ) `  x
) >. (comp `  D
) ( ( 1st `  H ) `  y
) ) ( ( S ( <. F ,  G >.  .xb  H ) R ) `  x ) ) )
9493ralrimivvva 2972 . 2  |-  ( ph  ->  A. x  e.  (
Base `  C ) A. y  e.  ( Base `  C ) A. f  e.  ( x
( Hom  `  C ) y ) ( ( ( S ( <. F ,  G >.  .xb 
H ) R ) `
 y ) (
<. ( ( 1st `  F
) `  x ) ,  ( ( 1st `  F ) `  y
) >. (comp `  D
) ( ( 1st `  H ) `  y
) ) ( ( x ( 2nd `  F
) y ) `  f ) )  =  ( ( ( x ( 2nd `  H
) y ) `  f ) ( <.
( ( 1st `  F
) `  x ) ,  ( ( 1st `  H ) `  x
) >. (comp `  D
) ( ( 1st `  H ) `  y
) ) ( ( S ( <. F ,  G >.  .xb  H ) R ) `  x ) ) )
952, 3, 57, 10, 4, 13, 30isnat2 16608 . 2  |-  ( ph  ->  ( ( S (
<. F ,  G >.  .xb 
H ) R )  e.  ( F N H )  <->  ( ( S ( <. F ,  G >.  .xb  H ) R )  e.  X_ x  e.  ( Base `  C
) ( ( ( 1st `  F ) `
 x ) ( Hom  `  D )
( ( 1st `  H
) `  x )
)  /\  A. x  e.  ( Base `  C
) A. y  e.  ( Base `  C
) A. f  e.  ( x ( Hom  `  C ) y ) ( ( ( S ( <. F ,  G >. 
.xb  H ) R ) `  y ) ( <. ( ( 1st `  F ) `  x
) ,  ( ( 1st `  F ) `
 y ) >.
(comp `  D )
( ( 1st `  H
) `  y )
) ( ( x ( 2nd `  F
) y ) `  f ) )  =  ( ( ( x ( 2nd `  H
) y ) `  f ) ( <.
( ( 1st `  F
) `  x ) ,  ( ( 1st `  H ) `  x
) >. (comp `  D
) ( ( 1st `  H ) `  y
) ) ( ( S ( <. F ,  G >.  .xb  H ) R ) `  x ) ) ) ) )
9648, 94, 95mpbir2and 957 1  |-  ( ph  ->  ( S ( <. F ,  G >.  .xb 
H ) R )  e.  ( F N H ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   _Vcvv 3200   <.cop 4183   class class class wbr 4653    |-> cmpt 4729   Rel wrel 5119   -->wf 5884   ` cfv 5888  (class class class)co 6650   1stc1st 7166   2ndc2nd 7167   X_cixp 7908   Basecbs 15857   Hom chom 15952  compcco 15953   Catccat 16325    Func cfunc 16514   Nat cnat 16601   FuncCat cfuc 16602
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-hom 15966  df-cco 15967  df-cat 16329  df-func 16518  df-nat 16603  df-fuc 16604
This theorem is referenced by:  fucass  16628  fuccatid  16629  evlfcllem  16861  yonedalem3b  16919
  Copyright terms: Public domain W3C validator