MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  invfuc Structured version   Visualization version   Unicode version

Theorem invfuc 16634
Description: If  V
( x ) is an inverse to  U ( x ) for each  x, and  U is a natural transformation, then  V is also a natural transformation, and they are inverse in the functor category. (Contributed by Mario Carneiro, 28-Jan-2017.)
Hypotheses
Ref Expression
fuciso.q  |-  Q  =  ( C FuncCat  D )
fuciso.b  |-  B  =  ( Base `  C
)
fuciso.n  |-  N  =  ( C Nat  D )
fuciso.f  |-  ( ph  ->  F  e.  ( C 
Func  D ) )
fuciso.g  |-  ( ph  ->  G  e.  ( C 
Func  D ) )
fucinv.i  |-  I  =  (Inv `  Q )
fucinv.j  |-  J  =  (Inv `  D )
invfuc.u  |-  ( ph  ->  U  e.  ( F N G ) )
invfuc.v  |-  ( (
ph  /\  x  e.  B )  ->  ( U `  x )
( ( ( 1st `  F ) `  x
) J ( ( 1st `  G ) `
 x ) ) X )
Assertion
Ref Expression
invfuc  |-  ( ph  ->  U ( F I G ) ( x  e.  B  |->  X ) )
Distinct variable groups:    x, B    x, C    x, D    x, I    x, F    x, G    x, J    x, N    ph, x    x, Q    x, U
Allowed substitution hint:    X( x)

Proof of Theorem invfuc
Dummy variables  y 
f  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 invfuc.u . 2  |-  ( ph  ->  U  e.  ( F N G ) )
2 invfuc.v . . . . . . . 8  |-  ( (
ph  /\  x  e.  B )  ->  ( U `  x )
( ( ( 1st `  F ) `  x
) J ( ( 1st `  G ) `
 x ) ) X )
3 eqid 2622 . . . . . . . . . 10  |-  ( Base `  D )  =  (
Base `  D )
4 fucinv.j . . . . . . . . . 10  |-  J  =  (Inv `  D )
5 fuciso.f . . . . . . . . . . . . 13  |-  ( ph  ->  F  e.  ( C 
Func  D ) )
6 funcrcl 16523 . . . . . . . . . . . . 13  |-  ( F  e.  ( C  Func  D )  ->  ( C  e.  Cat  /\  D  e. 
Cat ) )
75, 6syl 17 . . . . . . . . . . . 12  |-  ( ph  ->  ( C  e.  Cat  /\  D  e.  Cat )
)
87simprd 479 . . . . . . . . . . 11  |-  ( ph  ->  D  e.  Cat )
98adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  B )  ->  D  e.  Cat )
10 fuciso.b . . . . . . . . . . . 12  |-  B  =  ( Base `  C
)
11 relfunc 16522 . . . . . . . . . . . . 13  |-  Rel  ( C  Func  D )
12 1st2ndbr 7217 . . . . . . . . . . . . 13  |-  ( ( Rel  ( C  Func  D )  /\  F  e.  ( C  Func  D
) )  ->  ( 1st `  F ) ( C  Func  D )
( 2nd `  F
) )
1311, 5, 12sylancr 695 . . . . . . . . . . . 12  |-  ( ph  ->  ( 1st `  F
) ( C  Func  D ) ( 2nd `  F
) )
1410, 3, 13funcf1 16526 . . . . . . . . . . 11  |-  ( ph  ->  ( 1st `  F
) : B --> ( Base `  D ) )
1514ffvelrnda 6359 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  B )  ->  (
( 1st `  F
) `  x )  e.  ( Base `  D
) )
16 fuciso.g . . . . . . . . . . . . 13  |-  ( ph  ->  G  e.  ( C 
Func  D ) )
17 1st2ndbr 7217 . . . . . . . . . . . . 13  |-  ( ( Rel  ( C  Func  D )  /\  G  e.  ( C  Func  D
) )  ->  ( 1st `  G ) ( C  Func  D )
( 2nd `  G
) )
1811, 16, 17sylancr 695 . . . . . . . . . . . 12  |-  ( ph  ->  ( 1st `  G
) ( C  Func  D ) ( 2nd `  G
) )
1910, 3, 18funcf1 16526 . . . . . . . . . . 11  |-  ( ph  ->  ( 1st `  G
) : B --> ( Base `  D ) )
2019ffvelrnda 6359 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  B )  ->  (
( 1st `  G
) `  x )  e.  ( Base `  D
) )
21 eqid 2622 . . . . . . . . . 10  |-  ( Hom  `  D )  =  ( Hom  `  D )
223, 4, 9, 15, 20, 21invss 16421 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  B )  ->  (
( ( 1st `  F
) `  x ) J ( ( 1st `  G ) `  x
) )  C_  (
( ( ( 1st `  F ) `  x
) ( Hom  `  D
) ( ( 1st `  G ) `  x
) )  X.  (
( ( 1st `  G
) `  x )
( Hom  `  D ) ( ( 1st `  F
) `  x )
) ) )
2322ssbrd 4696 . . . . . . . 8  |-  ( (
ph  /\  x  e.  B )  ->  (
( U `  x
) ( ( ( 1st `  F ) `
 x ) J ( ( 1st `  G
) `  x )
) X  ->  ( U `  x )
( ( ( ( 1st `  F ) `
 x ) ( Hom  `  D )
( ( 1st `  G
) `  x )
)  X.  ( ( ( 1st `  G
) `  x )
( Hom  `  D ) ( ( 1st `  F
) `  x )
) ) X ) )
242, 23mpd 15 . . . . . . 7  |-  ( (
ph  /\  x  e.  B )  ->  ( U `  x )
( ( ( ( 1st `  F ) `
 x ) ( Hom  `  D )
( ( 1st `  G
) `  x )
)  X.  ( ( ( 1st `  G
) `  x )
( Hom  `  D ) ( ( 1st `  F
) `  x )
) ) X )
25 brxp 5147 . . . . . . . 8  |-  ( ( U `  x ) ( ( ( ( 1st `  F ) `
 x ) ( Hom  `  D )
( ( 1st `  G
) `  x )
)  X.  ( ( ( 1st `  G
) `  x )
( Hom  `  D ) ( ( 1st `  F
) `  x )
) ) X  <->  ( ( U `  x )  e.  ( ( ( 1st `  F ) `  x
) ( Hom  `  D
) ( ( 1st `  G ) `  x
) )  /\  X  e.  ( ( ( 1st `  G ) `  x
) ( Hom  `  D
) ( ( 1st `  F ) `  x
) ) ) )
2625simprbi 480 . . . . . . 7  |-  ( ( U `  x ) ( ( ( ( 1st `  F ) `
 x ) ( Hom  `  D )
( ( 1st `  G
) `  x )
)  X.  ( ( ( 1st `  G
) `  x )
( Hom  `  D ) ( ( 1st `  F
) `  x )
) ) X  ->  X  e.  ( (
( 1st `  G
) `  x )
( Hom  `  D ) ( ( 1st `  F
) `  x )
) )
2724, 26syl 17 . . . . . 6  |-  ( (
ph  /\  x  e.  B )  ->  X  e.  ( ( ( 1st `  G ) `  x
) ( Hom  `  D
) ( ( 1st `  F ) `  x
) ) )
2827ralrimiva 2966 . . . . 5  |-  ( ph  ->  A. x  e.  B  X  e.  ( (
( 1st `  G
) `  x )
( Hom  `  D ) ( ( 1st `  F
) `  x )
) )
29 fvex 6201 . . . . . . 7  |-  ( Base `  C )  e.  _V
3010, 29eqeltri 2697 . . . . . 6  |-  B  e. 
_V
31 mptelixpg 7945 . . . . . 6  |-  ( B  e.  _V  ->  (
( x  e.  B  |->  X )  e.  X_ x  e.  B  (
( ( 1st `  G
) `  x )
( Hom  `  D ) ( ( 1st `  F
) `  x )
)  <->  A. x  e.  B  X  e.  ( (
( 1st `  G
) `  x )
( Hom  `  D ) ( ( 1st `  F
) `  x )
) ) )
3230, 31ax-mp 5 . . . . 5  |-  ( ( x  e.  B  |->  X )  e.  X_ x  e.  B  ( (
( 1st `  G
) `  x )
( Hom  `  D ) ( ( 1st `  F
) `  x )
)  <->  A. x  e.  B  X  e.  ( (
( 1st `  G
) `  x )
( Hom  `  D ) ( ( 1st `  F
) `  x )
) )
3328, 32sylibr 224 . . . 4  |-  ( ph  ->  ( x  e.  B  |->  X )  e.  X_ x  e.  B  (
( ( 1st `  G
) `  x )
( Hom  `  D ) ( ( 1st `  F
) `  x )
) )
34 fveq2 6191 . . . . . 6  |-  ( x  =  y  ->  (
( 1st `  G
) `  x )  =  ( ( 1st `  G ) `  y
) )
35 fveq2 6191 . . . . . 6  |-  ( x  =  y  ->  (
( 1st `  F
) `  x )  =  ( ( 1st `  F ) `  y
) )
3634, 35oveq12d 6668 . . . . 5  |-  ( x  =  y  ->  (
( ( 1st `  G
) `  x )
( Hom  `  D ) ( ( 1st `  F
) `  x )
)  =  ( ( ( 1st `  G
) `  y )
( Hom  `  D ) ( ( 1st `  F
) `  y )
) )
3736cbvixpv 7926 . . . 4  |-  X_ x  e.  B  ( (
( 1st `  G
) `  x )
( Hom  `  D ) ( ( 1st `  F
) `  x )
)  =  X_ y  e.  B  ( (
( 1st `  G
) `  y )
( Hom  `  D ) ( ( 1st `  F
) `  y )
)
3833, 37syl6eleq 2711 . . 3  |-  ( ph  ->  ( x  e.  B  |->  X )  e.  X_ y  e.  B  (
( ( 1st `  G
) `  y )
( Hom  `  D ) ( ( 1st `  F
) `  y )
) )
39 simpr2 1068 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  f  e.  ( y ( Hom  `  C ) z ) ) )  ->  z  e.  B )
40 simpr 477 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  x  e.  B )  ->  x  e.  B )
41 eqid 2622 . . . . . . . . . . . . . . . . . . 19  |-  ( x  e.  B  |->  X )  =  ( x  e.  B  |->  X )
4241fvmpt2 6291 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  B  /\  X  e.  ( (
( 1st `  G
) `  x )
( Hom  `  D ) ( ( 1st `  F
) `  x )
) )  ->  (
( x  e.  B  |->  X ) `  x
)  =  X )
4340, 27, 42syl2anc 693 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  x  e.  B )  ->  (
( x  e.  B  |->  X ) `  x
)  =  X )
442, 43breqtrrd 4681 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  B )  ->  ( U `  x )
( ( ( 1st `  F ) `  x
) J ( ( 1st `  G ) `
 x ) ) ( ( x  e.  B  |->  X ) `  x ) )
4544ralrimiva 2966 . . . . . . . . . . . . . . 15  |-  ( ph  ->  A. x  e.  B  ( U `  x ) ( ( ( 1st `  F ) `  x
) J ( ( 1st `  G ) `
 x ) ) ( ( x  e.  B  |->  X ) `  x ) )
4645adantr 481 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  f  e.  ( y ( Hom  `  C ) z ) ) )  ->  A. x  e.  B  ( U `  x ) ( ( ( 1st `  F
) `  x ) J ( ( 1st `  G ) `  x
) ) ( ( x  e.  B  |->  X ) `  x ) )
47 nfcv 2764 . . . . . . . . . . . . . . . 16  |-  F/_ x
( U `  z
)
48 nfcv 2764 . . . . . . . . . . . . . . . 16  |-  F/_ x
( ( ( 1st `  F ) `  z
) J ( ( 1st `  G ) `
 z ) )
49 nffvmpt1 6199 . . . . . . . . . . . . . . . 16  |-  F/_ x
( ( x  e.  B  |->  X ) `  z )
5047, 48, 49nfbr 4699 . . . . . . . . . . . . . . 15  |-  F/ x
( U `  z
) ( ( ( 1st `  F ) `
 z ) J ( ( 1st `  G
) `  z )
) ( ( x  e.  B  |->  X ) `
 z )
51 fveq2 6191 . . . . . . . . . . . . . . . 16  |-  ( x  =  z  ->  ( U `  x )  =  ( U `  z ) )
52 fveq2 6191 . . . . . . . . . . . . . . . . 17  |-  ( x  =  z  ->  (
( 1st `  F
) `  x )  =  ( ( 1st `  F ) `  z
) )
53 fveq2 6191 . . . . . . . . . . . . . . . . 17  |-  ( x  =  z  ->  (
( 1st `  G
) `  x )  =  ( ( 1st `  G ) `  z
) )
5452, 53oveq12d 6668 . . . . . . . . . . . . . . . 16  |-  ( x  =  z  ->  (
( ( 1st `  F
) `  x ) J ( ( 1st `  G ) `  x
) )  =  ( ( ( 1st `  F
) `  z ) J ( ( 1st `  G ) `  z
) ) )
55 fveq2 6191 . . . . . . . . . . . . . . . 16  |-  ( x  =  z  ->  (
( x  e.  B  |->  X ) `  x
)  =  ( ( x  e.  B  |->  X ) `  z ) )
5651, 54, 55breq123d 4667 . . . . . . . . . . . . . . 15  |-  ( x  =  z  ->  (
( U `  x
) ( ( ( 1st `  F ) `
 x ) J ( ( 1st `  G
) `  x )
) ( ( x  e.  B  |->  X ) `
 x )  <->  ( U `  z ) ( ( ( 1st `  F
) `  z ) J ( ( 1st `  G ) `  z
) ) ( ( x  e.  B  |->  X ) `  z ) ) )
5750, 56rspc 3303 . . . . . . . . . . . . . 14  |-  ( z  e.  B  ->  ( A. x  e.  B  ( U `  x ) ( ( ( 1st `  F ) `  x
) J ( ( 1st `  G ) `
 x ) ) ( ( x  e.  B  |->  X ) `  x )  ->  ( U `  z )
( ( ( 1st `  F ) `  z
) J ( ( 1st `  G ) `
 z ) ) ( ( x  e.  B  |->  X ) `  z ) ) )
5839, 46, 57sylc 65 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  f  e.  ( y ( Hom  `  C ) z ) ) )  ->  ( U `  z )
( ( ( 1st `  F ) `  z
) J ( ( 1st `  G ) `
 z ) ) ( ( x  e.  B  |->  X ) `  z ) )
598adantr 481 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  f  e.  ( y ( Hom  `  C ) z ) ) )  ->  D  e.  Cat )
6014adantr 481 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  f  e.  ( y ( Hom  `  C ) z ) ) )  ->  ( 1st `  F ) : B --> ( Base `  D
) )
6160, 39ffvelrnd 6360 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  f  e.  ( y ( Hom  `  C ) z ) ) )  ->  (
( 1st `  F
) `  z )  e.  ( Base `  D
) )
6219adantr 481 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  f  e.  ( y ( Hom  `  C ) z ) ) )  ->  ( 1st `  G ) : B --> ( Base `  D
) )
6362, 39ffvelrnd 6360 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  f  e.  ( y ( Hom  `  C ) z ) ) )  ->  (
( 1st `  G
) `  z )  e.  ( Base `  D
) )
64 eqid 2622 . . . . . . . . . . . . . 14  |-  (Sect `  D )  =  (Sect `  D )
653, 4, 59, 61, 63, 64isinv 16420 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  f  e.  ( y ( Hom  `  C ) z ) ) )  ->  (
( U `  z
) ( ( ( 1st `  F ) `
 z ) J ( ( 1st `  G
) `  z )
) ( ( x  e.  B  |->  X ) `
 z )  <->  ( ( U `  z )
( ( ( 1st `  F ) `  z
) (Sect `  D
) ( ( 1st `  G ) `  z
) ) ( ( x  e.  B  |->  X ) `  z )  /\  ( ( x  e.  B  |->  X ) `
 z ) ( ( ( 1st `  G
) `  z )
(Sect `  D )
( ( 1st `  F
) `  z )
) ( U `  z ) ) ) )
6658, 65mpbid 222 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  f  e.  ( y ( Hom  `  C ) z ) ) )  ->  (
( U `  z
) ( ( ( 1st `  F ) `
 z ) (Sect `  D ) ( ( 1st `  G ) `
 z ) ) ( ( x  e.  B  |->  X ) `  z )  /\  (
( x  e.  B  |->  X ) `  z
) ( ( ( 1st `  G ) `
 z ) (Sect `  D ) ( ( 1st `  F ) `
 z ) ) ( U `  z
) ) )
6766simpld 475 . . . . . . . . . . 11  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  f  e.  ( y ( Hom  `  C ) z ) ) )  ->  ( U `  z )
( ( ( 1st `  F ) `  z
) (Sect `  D
) ( ( 1st `  G ) `  z
) ) ( ( x  e.  B  |->  X ) `  z ) )
68 eqid 2622 . . . . . . . . . . . 12  |-  (comp `  D )  =  (comp `  D )
69 eqid 2622 . . . . . . . . . . . 12  |-  ( Id
`  D )  =  ( Id `  D
)
703, 21, 68, 69, 64, 59, 61, 63issect 16413 . . . . . . . . . . 11  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  f  e.  ( y ( Hom  `  C ) z ) ) )  ->  (
( U `  z
) ( ( ( 1st `  F ) `
 z ) (Sect `  D ) ( ( 1st `  G ) `
 z ) ) ( ( x  e.  B  |->  X ) `  z )  <->  ( ( U `  z )  e.  ( ( ( 1st `  F ) `  z
) ( Hom  `  D
) ( ( 1st `  G ) `  z
) )  /\  (
( x  e.  B  |->  X ) `  z
)  e.  ( ( ( 1st `  G
) `  z )
( Hom  `  D ) ( ( 1st `  F
) `  z )
)  /\  ( (
( x  e.  B  |->  X ) `  z
) ( <. (
( 1st `  F
) `  z ) ,  ( ( 1st `  G ) `  z
) >. (comp `  D
) ( ( 1st `  F ) `  z
) ) ( U `
 z ) )  =  ( ( Id
`  D ) `  ( ( 1st `  F
) `  z )
) ) ) )
7167, 70mpbid 222 . . . . . . . . . 10  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  f  e.  ( y ( Hom  `  C ) z ) ) )  ->  (
( U `  z
)  e.  ( ( ( 1st `  F
) `  z )
( Hom  `  D ) ( ( 1st `  G
) `  z )
)  /\  ( (
x  e.  B  |->  X ) `  z )  e.  ( ( ( 1st `  G ) `
 z ) ( Hom  `  D )
( ( 1st `  F
) `  z )
)  /\  ( (
( x  e.  B  |->  X ) `  z
) ( <. (
( 1st `  F
) `  z ) ,  ( ( 1st `  G ) `  z
) >. (comp `  D
) ( ( 1st `  F ) `  z
) ) ( U `
 z ) )  =  ( ( Id
`  D ) `  ( ( 1st `  F
) `  z )
) ) )
7271simp3d 1075 . . . . . . . . 9  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  f  e.  ( y ( Hom  `  C ) z ) ) )  ->  (
( ( x  e.  B  |->  X ) `  z ) ( <.
( ( 1st `  F
) `  z ) ,  ( ( 1st `  G ) `  z
) >. (comp `  D
) ( ( 1st `  F ) `  z
) ) ( U `
 z ) )  =  ( ( Id
`  D ) `  ( ( 1st `  F
) `  z )
) )
7372oveq1d 6665 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  f  e.  ( y ( Hom  `  C ) z ) ) )  ->  (
( ( ( x  e.  B  |->  X ) `
 z ) (
<. ( ( 1st `  F
) `  z ) ,  ( ( 1st `  G ) `  z
) >. (comp `  D
) ( ( 1st `  F ) `  z
) ) ( U `
 z ) ) ( <. ( ( 1st `  F ) `  y
) ,  ( ( 1st `  F ) `
 z ) >.
(comp `  D )
( ( 1st `  F
) `  z )
) ( ( y ( 2nd `  F
) z ) `  f ) )  =  ( ( ( Id
`  D ) `  ( ( 1st `  F
) `  z )
) ( <. (
( 1st `  F
) `  y ) ,  ( ( 1st `  F ) `  z
) >. (comp `  D
) ( ( 1st `  F ) `  z
) ) ( ( y ( 2nd `  F
) z ) `  f ) ) )
74 simpr1 1067 . . . . . . . . . 10  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  f  e.  ( y ( Hom  `  C ) z ) ) )  ->  y  e.  B )
7560, 74ffvelrnd 6360 . . . . . . . . 9  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  f  e.  ( y ( Hom  `  C ) z ) ) )  ->  (
( 1st `  F
) `  y )  e.  ( Base `  D
) )
76 eqid 2622 . . . . . . . . . . 11  |-  ( Hom  `  C )  =  ( Hom  `  C )
7713adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  f  e.  ( y ( Hom  `  C ) z ) ) )  ->  ( 1st `  F ) ( C  Func  D )
( 2nd `  F
) )
7810, 76, 21, 77, 74, 39funcf2 16528 . . . . . . . . . 10  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  f  e.  ( y ( Hom  `  C ) z ) ) )  ->  (
y ( 2nd `  F
) z ) : ( y ( Hom  `  C ) z ) --> ( ( ( 1st `  F ) `  y
) ( Hom  `  D
) ( ( 1st `  F ) `  z
) ) )
79 simpr3 1069 . . . . . . . . . 10  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  f  e.  ( y ( Hom  `  C ) z ) ) )  ->  f  e.  ( y ( Hom  `  C ) z ) )
8078, 79ffvelrnd 6360 . . . . . . . . 9  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  f  e.  ( y ( Hom  `  C ) z ) ) )  ->  (
( y ( 2nd `  F ) z ) `
 f )  e.  ( ( ( 1st `  F ) `  y
) ( Hom  `  D
) ( ( 1st `  F ) `  z
) ) )
813, 21, 69, 59, 75, 68, 61, 80catlid 16344 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  f  e.  ( y ( Hom  `  C ) z ) ) )  ->  (
( ( Id `  D ) `  (
( 1st `  F
) `  z )
) ( <. (
( 1st `  F
) `  y ) ,  ( ( 1st `  F ) `  z
) >. (comp `  D
) ( ( 1st `  F ) `  z
) ) ( ( y ( 2nd `  F
) z ) `  f ) )  =  ( ( y ( 2nd `  F ) z ) `  f
) )
8273, 81eqtr2d 2657 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  f  e.  ( y ( Hom  `  C ) z ) ) )  ->  (
( y ( 2nd `  F ) z ) `
 f )  =  ( ( ( ( x  e.  B  |->  X ) `  z ) ( <. ( ( 1st `  F ) `  z
) ,  ( ( 1st `  G ) `
 z ) >.
(comp `  D )
( ( 1st `  F
) `  z )
) ( U `  z ) ) (
<. ( ( 1st `  F
) `  y ) ,  ( ( 1st `  F ) `  z
) >. (comp `  D
) ( ( 1st `  F ) `  z
) ) ( ( y ( 2nd `  F
) z ) `  f ) ) )
83 fuciso.n . . . . . . . . 9  |-  N  =  ( C Nat  D )
841adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  f  e.  ( y ( Hom  `  C ) z ) ) )  ->  U  e.  ( F N G ) )
8583, 84nat1st2nd 16611 . . . . . . . . 9  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  f  e.  ( y ( Hom  `  C ) z ) ) )  ->  U  e.  ( <. ( 1st `  F
) ,  ( 2nd `  F ) >. N <. ( 1st `  G ) ,  ( 2nd `  G
) >. ) )
8683, 85, 10, 21, 39natcl 16613 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  f  e.  ( y ( Hom  `  C ) z ) ) )  ->  ( U `  z )  e.  ( ( ( 1st `  F ) `  z
) ( Hom  `  D
) ( ( 1st `  G ) `  z
) ) )
8771simp2d 1074 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  f  e.  ( y ( Hom  `  C ) z ) ) )  ->  (
( x  e.  B  |->  X ) `  z
)  e.  ( ( ( 1st `  G
) `  z )
( Hom  `  D ) ( ( 1st `  F
) `  z )
) )
883, 21, 68, 59, 75, 61, 63, 80, 86, 61, 87catass 16347 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  f  e.  ( y ( Hom  `  C ) z ) ) )  ->  (
( ( ( x  e.  B  |->  X ) `
 z ) (
<. ( ( 1st `  F
) `  z ) ,  ( ( 1st `  G ) `  z
) >. (comp `  D
) ( ( 1st `  F ) `  z
) ) ( U `
 z ) ) ( <. ( ( 1st `  F ) `  y
) ,  ( ( 1st `  F ) `
 z ) >.
(comp `  D )
( ( 1st `  F
) `  z )
) ( ( y ( 2nd `  F
) z ) `  f ) )  =  ( ( ( x  e.  B  |->  X ) `
 z ) (
<. ( ( 1st `  F
) `  y ) ,  ( ( 1st `  G ) `  z
) >. (comp `  D
) ( ( 1st `  F ) `  z
) ) ( ( U `  z ) ( <. ( ( 1st `  F ) `  y
) ,  ( ( 1st `  F ) `
 z ) >.
(comp `  D )
( ( 1st `  G
) `  z )
) ( ( y ( 2nd `  F
) z ) `  f ) ) ) )
8983, 85, 10, 76, 68, 74, 39, 79nati 16615 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  f  e.  ( y ( Hom  `  C ) z ) ) )  ->  (
( U `  z
) ( <. (
( 1st `  F
) `  y ) ,  ( ( 1st `  F ) `  z
) >. (comp `  D
) ( ( 1st `  G ) `  z
) ) ( ( y ( 2nd `  F
) z ) `  f ) )  =  ( ( ( y ( 2nd `  G
) z ) `  f ) ( <.
( ( 1st `  F
) `  y ) ,  ( ( 1st `  G ) `  y
) >. (comp `  D
) ( ( 1st `  G ) `  z
) ) ( U `
 y ) ) )
9089oveq2d 6666 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  f  e.  ( y ( Hom  `  C ) z ) ) )  ->  (
( ( x  e.  B  |->  X ) `  z ) ( <.
( ( 1st `  F
) `  y ) ,  ( ( 1st `  G ) `  z
) >. (comp `  D
) ( ( 1st `  F ) `  z
) ) ( ( U `  z ) ( <. ( ( 1st `  F ) `  y
) ,  ( ( 1st `  F ) `
 z ) >.
(comp `  D )
( ( 1st `  G
) `  z )
) ( ( y ( 2nd `  F
) z ) `  f ) ) )  =  ( ( ( x  e.  B  |->  X ) `  z ) ( <. ( ( 1st `  F ) `  y
) ,  ( ( 1st `  G ) `
 z ) >.
(comp `  D )
( ( 1st `  F
) `  z )
) ( ( ( y ( 2nd `  G
) z ) `  f ) ( <.
( ( 1st `  F
) `  y ) ,  ( ( 1st `  G ) `  y
) >. (comp `  D
) ( ( 1st `  G ) `  z
) ) ( U `
 y ) ) ) )
9182, 88, 903eqtrd 2660 . . . . . 6  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  f  e.  ( y ( Hom  `  C ) z ) ) )  ->  (
( y ( 2nd `  F ) z ) `
 f )  =  ( ( ( x  e.  B  |->  X ) `
 z ) (
<. ( ( 1st `  F
) `  y ) ,  ( ( 1st `  G ) `  z
) >. (comp `  D
) ( ( 1st `  F ) `  z
) ) ( ( ( y ( 2nd `  G ) z ) `
 f ) (
<. ( ( 1st `  F
) `  y ) ,  ( ( 1st `  G ) `  y
) >. (comp `  D
) ( ( 1st `  G ) `  z
) ) ( U `
 y ) ) ) )
9291oveq1d 6665 . . . . 5  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  f  e.  ( y ( Hom  `  C ) z ) ) )  ->  (
( ( y ( 2nd `  F ) z ) `  f
) ( <. (
( 1st `  G
) `  y ) ,  ( ( 1st `  F ) `  y
) >. (comp `  D
) ( ( 1st `  F ) `  z
) ) ( ( x  e.  B  |->  X ) `  y ) )  =  ( ( ( ( x  e.  B  |->  X ) `  z ) ( <.
( ( 1st `  F
) `  y ) ,  ( ( 1st `  G ) `  z
) >. (comp `  D
) ( ( 1st `  F ) `  z
) ) ( ( ( y ( 2nd `  G ) z ) `
 f ) (
<. ( ( 1st `  F
) `  y ) ,  ( ( 1st `  G ) `  y
) >. (comp `  D
) ( ( 1st `  G ) `  z
) ) ( U `
 y ) ) ) ( <. (
( 1st `  G
) `  y ) ,  ( ( 1st `  F ) `  y
) >. (comp `  D
) ( ( 1st `  F ) `  z
) ) ( ( x  e.  B  |->  X ) `  y ) ) )
9362, 74ffvelrnd 6360 . . . . . 6  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  f  e.  ( y ( Hom  `  C ) z ) ) )  ->  (
( 1st `  G
) `  y )  e.  ( Base `  D
) )
94 nfcv 2764 . . . . . . . . . . . . 13  |-  F/_ x
( U `  y
)
95 nfcv 2764 . . . . . . . . . . . . 13  |-  F/_ x
( ( ( 1st `  F ) `  y
) J ( ( 1st `  G ) `
 y ) )
96 nffvmpt1 6199 . . . . . . . . . . . . 13  |-  F/_ x
( ( x  e.  B  |->  X ) `  y )
9794, 95, 96nfbr 4699 . . . . . . . . . . . 12  |-  F/ x
( U `  y
) ( ( ( 1st `  F ) `
 y ) J ( ( 1st `  G
) `  y )
) ( ( x  e.  B  |->  X ) `
 y )
98 fveq2 6191 . . . . . . . . . . . . 13  |-  ( x  =  y  ->  ( U `  x )  =  ( U `  y ) )
9935, 34oveq12d 6668 . . . . . . . . . . . . 13  |-  ( x  =  y  ->  (
( ( 1st `  F
) `  x ) J ( ( 1st `  G ) `  x
) )  =  ( ( ( 1st `  F
) `  y ) J ( ( 1st `  G ) `  y
) ) )
100 fveq2 6191 . . . . . . . . . . . . 13  |-  ( x  =  y  ->  (
( x  e.  B  |->  X ) `  x
)  =  ( ( x  e.  B  |->  X ) `  y ) )
10198, 99, 100breq123d 4667 . . . . . . . . . . . 12  |-  ( x  =  y  ->  (
( U `  x
) ( ( ( 1st `  F ) `
 x ) J ( ( 1st `  G
) `  x )
) ( ( x  e.  B  |->  X ) `
 x )  <->  ( U `  y ) ( ( ( 1st `  F
) `  y ) J ( ( 1st `  G ) `  y
) ) ( ( x  e.  B  |->  X ) `  y ) ) )
10297, 101rspc 3303 . . . . . . . . . . 11  |-  ( y  e.  B  ->  ( A. x  e.  B  ( U `  x ) ( ( ( 1st `  F ) `  x
) J ( ( 1st `  G ) `
 x ) ) ( ( x  e.  B  |->  X ) `  x )  ->  ( U `  y )
( ( ( 1st `  F ) `  y
) J ( ( 1st `  G ) `
 y ) ) ( ( x  e.  B  |->  X ) `  y ) ) )
10374, 46, 102sylc 65 . . . . . . . . . 10  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  f  e.  ( y ( Hom  `  C ) z ) ) )  ->  ( U `  y )
( ( ( 1st `  F ) `  y
) J ( ( 1st `  G ) `
 y ) ) ( ( x  e.  B  |->  X ) `  y ) )
1043, 4, 59, 75, 93, 64isinv 16420 . . . . . . . . . 10  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  f  e.  ( y ( Hom  `  C ) z ) ) )  ->  (
( U `  y
) ( ( ( 1st `  F ) `
 y ) J ( ( 1st `  G
) `  y )
) ( ( x  e.  B  |->  X ) `
 y )  <->  ( ( U `  y )
( ( ( 1st `  F ) `  y
) (Sect `  D
) ( ( 1st `  G ) `  y
) ) ( ( x  e.  B  |->  X ) `  y )  /\  ( ( x  e.  B  |->  X ) `
 y ) ( ( ( 1st `  G
) `  y )
(Sect `  D )
( ( 1st `  F
) `  y )
) ( U `  y ) ) ) )
105103, 104mpbid 222 . . . . . . . . 9  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  f  e.  ( y ( Hom  `  C ) z ) ) )  ->  (
( U `  y
) ( ( ( 1st `  F ) `
 y ) (Sect `  D ) ( ( 1st `  G ) `
 y ) ) ( ( x  e.  B  |->  X ) `  y )  /\  (
( x  e.  B  |->  X ) `  y
) ( ( ( 1st `  G ) `
 y ) (Sect `  D ) ( ( 1st `  F ) `
 y ) ) ( U `  y
) ) )
106105simprd 479 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  f  e.  ( y ( Hom  `  C ) z ) ) )  ->  (
( x  e.  B  |->  X ) `  y
) ( ( ( 1st `  G ) `
 y ) (Sect `  D ) ( ( 1st `  F ) `
 y ) ) ( U `  y
) )
1073, 21, 68, 69, 64, 59, 93, 75issect 16413 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  f  e.  ( y ( Hom  `  C ) z ) ) )  ->  (
( ( x  e.  B  |->  X ) `  y ) ( ( ( 1st `  G
) `  y )
(Sect `  D )
( ( 1st `  F
) `  y )
) ( U `  y )  <->  ( (
( x  e.  B  |->  X ) `  y
)  e.  ( ( ( 1st `  G
) `  y )
( Hom  `  D ) ( ( 1st `  F
) `  y )
)  /\  ( U `  y )  e.  ( ( ( 1st `  F
) `  y )
( Hom  `  D ) ( ( 1st `  G
) `  y )
)  /\  ( ( U `  y )
( <. ( ( 1st `  G ) `  y
) ,  ( ( 1st `  F ) `
 y ) >.
(comp `  D )
( ( 1st `  G
) `  y )
) ( ( x  e.  B  |->  X ) `
 y ) )  =  ( ( Id
`  D ) `  ( ( 1st `  G
) `  y )
) ) ) )
108106, 107mpbid 222 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  f  e.  ( y ( Hom  `  C ) z ) ) )  ->  (
( ( x  e.  B  |->  X ) `  y )  e.  ( ( ( 1st `  G
) `  y )
( Hom  `  D ) ( ( 1st `  F
) `  y )
)  /\  ( U `  y )  e.  ( ( ( 1st `  F
) `  y )
( Hom  `  D ) ( ( 1st `  G
) `  y )
)  /\  ( ( U `  y )
( <. ( ( 1st `  G ) `  y
) ,  ( ( 1st `  F ) `
 y ) >.
(comp `  D )
( ( 1st `  G
) `  y )
) ( ( x  e.  B  |->  X ) `
 y ) )  =  ( ( Id
`  D ) `  ( ( 1st `  G
) `  y )
) ) )
109108simp1d 1073 . . . . . 6  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  f  e.  ( y ( Hom  `  C ) z ) ) )  ->  (
( x  e.  B  |->  X ) `  y
)  e.  ( ( ( 1st `  G
) `  y )
( Hom  `  D ) ( ( 1st `  F
) `  y )
) )
110108simp2d 1074 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  f  e.  ( y ( Hom  `  C ) z ) ) )  ->  ( U `  y )  e.  ( ( ( 1st `  F ) `  y
) ( Hom  `  D
) ( ( 1st `  G ) `  y
) ) )
11118adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  f  e.  ( y ( Hom  `  C ) z ) ) )  ->  ( 1st `  G ) ( C  Func  D )
( 2nd `  G
) )
11210, 76, 21, 111, 74, 39funcf2 16528 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  f  e.  ( y ( Hom  `  C ) z ) ) )  ->  (
y ( 2nd `  G
) z ) : ( y ( Hom  `  C ) z ) --> ( ( ( 1st `  G ) `  y
) ( Hom  `  D
) ( ( 1st `  G ) `  z
) ) )
113112, 79ffvelrnd 6360 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  f  e.  ( y ( Hom  `  C ) z ) ) )  ->  (
( y ( 2nd `  G ) z ) `
 f )  e.  ( ( ( 1st `  G ) `  y
) ( Hom  `  D
) ( ( 1st `  G ) `  z
) ) )
1143, 21, 68, 59, 75, 93, 63, 110, 113catcocl 16346 . . . . . 6  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  f  e.  ( y ( Hom  `  C ) z ) ) )  ->  (
( ( y ( 2nd `  G ) z ) `  f
) ( <. (
( 1st `  F
) `  y ) ,  ( ( 1st `  G ) `  y
) >. (comp `  D
) ( ( 1st `  G ) `  z
) ) ( U `
 y ) )  e.  ( ( ( 1st `  F ) `
 y ) ( Hom  `  D )
( ( 1st `  G
) `  z )
) )
1153, 21, 68, 59, 93, 75, 63, 109, 114, 61, 87catass 16347 . . . . 5  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  f  e.  ( y ( Hom  `  C ) z ) ) )  ->  (
( ( ( x  e.  B  |->  X ) `
 z ) (
<. ( ( 1st `  F
) `  y ) ,  ( ( 1st `  G ) `  z
) >. (comp `  D
) ( ( 1st `  F ) `  z
) ) ( ( ( y ( 2nd `  G ) z ) `
 f ) (
<. ( ( 1st `  F
) `  y ) ,  ( ( 1st `  G ) `  y
) >. (comp `  D
) ( ( 1st `  G ) `  z
) ) ( U `
 y ) ) ) ( <. (
( 1st `  G
) `  y ) ,  ( ( 1st `  F ) `  y
) >. (comp `  D
) ( ( 1st `  F ) `  z
) ) ( ( x  e.  B  |->  X ) `  y ) )  =  ( ( ( x  e.  B  |->  X ) `  z
) ( <. (
( 1st `  G
) `  y ) ,  ( ( 1st `  G ) `  z
) >. (comp `  D
) ( ( 1st `  F ) `  z
) ) ( ( ( ( y ( 2nd `  G ) z ) `  f
) ( <. (
( 1st `  F
) `  y ) ,  ( ( 1st `  G ) `  y
) >. (comp `  D
) ( ( 1st `  G ) `  z
) ) ( U `
 y ) ) ( <. ( ( 1st `  G ) `  y
) ,  ( ( 1st `  F ) `
 y ) >.
(comp `  D )
( ( 1st `  G
) `  z )
) ( ( x  e.  B  |->  X ) `
 y ) ) ) )
11683, 85, 10, 21, 74natcl 16613 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  f  e.  ( y ( Hom  `  C ) z ) ) )  ->  ( U `  y )  e.  ( ( ( 1st `  F ) `  y
) ( Hom  `  D
) ( ( 1st `  G ) `  y
) ) )
1173, 21, 68, 59, 93, 75, 93, 109, 116, 63, 113catass 16347 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  f  e.  ( y ( Hom  `  C ) z ) ) )  ->  (
( ( ( y ( 2nd `  G
) z ) `  f ) ( <.
( ( 1st `  F
) `  y ) ,  ( ( 1st `  G ) `  y
) >. (comp `  D
) ( ( 1st `  G ) `  z
) ) ( U `
 y ) ) ( <. ( ( 1st `  G ) `  y
) ,  ( ( 1st `  F ) `
 y ) >.
(comp `  D )
( ( 1st `  G
) `  z )
) ( ( x  e.  B  |->  X ) `
 y ) )  =  ( ( ( y ( 2nd `  G
) z ) `  f ) ( <.
( ( 1st `  G
) `  y ) ,  ( ( 1st `  G ) `  y
) >. (comp `  D
) ( ( 1st `  G ) `  z
) ) ( ( U `  y ) ( <. ( ( 1st `  G ) `  y
) ,  ( ( 1st `  F ) `
 y ) >.
(comp `  D )
( ( 1st `  G
) `  y )
) ( ( x  e.  B  |->  X ) `
 y ) ) ) )
118108simp3d 1075 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  f  e.  ( y ( Hom  `  C ) z ) ) )  ->  (
( U `  y
) ( <. (
( 1st `  G
) `  y ) ,  ( ( 1st `  F ) `  y
) >. (comp `  D
) ( ( 1st `  G ) `  y
) ) ( ( x  e.  B  |->  X ) `  y ) )  =  ( ( Id `  D ) `
 ( ( 1st `  G ) `  y
) ) )
119118oveq2d 6666 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  f  e.  ( y ( Hom  `  C ) z ) ) )  ->  (
( ( y ( 2nd `  G ) z ) `  f
) ( <. (
( 1st `  G
) `  y ) ,  ( ( 1st `  G ) `  y
) >. (comp `  D
) ( ( 1st `  G ) `  z
) ) ( ( U `  y ) ( <. ( ( 1st `  G ) `  y
) ,  ( ( 1st `  F ) `
 y ) >.
(comp `  D )
( ( 1st `  G
) `  y )
) ( ( x  e.  B  |->  X ) `
 y ) ) )  =  ( ( ( y ( 2nd `  G ) z ) `
 f ) (
<. ( ( 1st `  G
) `  y ) ,  ( ( 1st `  G ) `  y
) >. (comp `  D
) ( ( 1st `  G ) `  z
) ) ( ( Id `  D ) `
 ( ( 1st `  G ) `  y
) ) ) )
1203, 21, 69, 59, 93, 68, 63, 113catrid 16345 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  f  e.  ( y ( Hom  `  C ) z ) ) )  ->  (
( ( y ( 2nd `  G ) z ) `  f
) ( <. (
( 1st `  G
) `  y ) ,  ( ( 1st `  G ) `  y
) >. (comp `  D
) ( ( 1st `  G ) `  z
) ) ( ( Id `  D ) `
 ( ( 1st `  G ) `  y
) ) )  =  ( ( y ( 2nd `  G ) z ) `  f
) )
121117, 119, 1203eqtrd 2660 . . . . . 6  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  f  e.  ( y ( Hom  `  C ) z ) ) )  ->  (
( ( ( y ( 2nd `  G
) z ) `  f ) ( <.
( ( 1st `  F
) `  y ) ,  ( ( 1st `  G ) `  y
) >. (comp `  D
) ( ( 1st `  G ) `  z
) ) ( U `
 y ) ) ( <. ( ( 1st `  G ) `  y
) ,  ( ( 1st `  F ) `
 y ) >.
(comp `  D )
( ( 1st `  G
) `  z )
) ( ( x  e.  B  |->  X ) `
 y ) )  =  ( ( y ( 2nd `  G
) z ) `  f ) )
122121oveq2d 6666 . . . . 5  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  f  e.  ( y ( Hom  `  C ) z ) ) )  ->  (
( ( x  e.  B  |->  X ) `  z ) ( <.
( ( 1st `  G
) `  y ) ,  ( ( 1st `  G ) `  z
) >. (comp `  D
) ( ( 1st `  F ) `  z
) ) ( ( ( ( y ( 2nd `  G ) z ) `  f
) ( <. (
( 1st `  F
) `  y ) ,  ( ( 1st `  G ) `  y
) >. (comp `  D
) ( ( 1st `  G ) `  z
) ) ( U `
 y ) ) ( <. ( ( 1st `  G ) `  y
) ,  ( ( 1st `  F ) `
 y ) >.
(comp `  D )
( ( 1st `  G
) `  z )
) ( ( x  e.  B  |->  X ) `
 y ) ) )  =  ( ( ( x  e.  B  |->  X ) `  z
) ( <. (
( 1st `  G
) `  y ) ,  ( ( 1st `  G ) `  z
) >. (comp `  D
) ( ( 1st `  F ) `  z
) ) ( ( y ( 2nd `  G
) z ) `  f ) ) )
12392, 115, 1223eqtrrd 2661 . . . 4  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B  /\  f  e.  ( y ( Hom  `  C ) z ) ) )  ->  (
( ( x  e.  B  |->  X ) `  z ) ( <.
( ( 1st `  G
) `  y ) ,  ( ( 1st `  G ) `  z
) >. (comp `  D
) ( ( 1st `  F ) `  z
) ) ( ( y ( 2nd `  G
) z ) `  f ) )  =  ( ( ( y ( 2nd `  F
) z ) `  f ) ( <.
( ( 1st `  G
) `  y ) ,  ( ( 1st `  F ) `  y
) >. (comp `  D
) ( ( 1st `  F ) `  z
) ) ( ( x  e.  B  |->  X ) `  y ) ) )
124123ralrimivvva 2972 . . 3  |-  ( ph  ->  A. y  e.  B  A. z  e.  B  A. f  e.  (
y ( Hom  `  C
) z ) ( ( ( x  e.  B  |->  X ) `  z ) ( <.
( ( 1st `  G
) `  y ) ,  ( ( 1st `  G ) `  z
) >. (comp `  D
) ( ( 1st `  F ) `  z
) ) ( ( y ( 2nd `  G
) z ) `  f ) )  =  ( ( ( y ( 2nd `  F
) z ) `  f ) ( <.
( ( 1st `  G
) `  y ) ,  ( ( 1st `  F ) `  y
) >. (comp `  D
) ( ( 1st `  F ) `  z
) ) ( ( x  e.  B  |->  X ) `  y ) ) )
12583, 10, 76, 21, 68, 16, 5isnat2 16608 . . 3  |-  ( ph  ->  ( ( x  e.  B  |->  X )  e.  ( G N F )  <->  ( ( x  e.  B  |->  X )  e.  X_ y  e.  B  ( ( ( 1st `  G ) `  y
) ( Hom  `  D
) ( ( 1st `  F ) `  y
) )  /\  A. y  e.  B  A. z  e.  B  A. f  e.  ( y
( Hom  `  C ) z ) ( ( ( x  e.  B  |->  X ) `  z
) ( <. (
( 1st `  G
) `  y ) ,  ( ( 1st `  G ) `  z
) >. (comp `  D
) ( ( 1st `  F ) `  z
) ) ( ( y ( 2nd `  G
) z ) `  f ) )  =  ( ( ( y ( 2nd `  F
) z ) `  f ) ( <.
( ( 1st `  G
) `  y ) ,  ( ( 1st `  F ) `  y
) >. (comp `  D
) ( ( 1st `  F ) `  z
) ) ( ( x  e.  B  |->  X ) `  y ) ) ) ) )
12638, 124, 125mpbir2and 957 . 2  |-  ( ph  ->  ( x  e.  B  |->  X )  e.  ( G N F ) )
127 nfv 1843 . . . 4  |-  F/ y ( U `  x
) ( ( ( 1st `  F ) `
 x ) J ( ( 1st `  G
) `  x )
) ( ( x  e.  B  |->  X ) `
 x )
128127, 97, 101cbvral 3167 . . 3  |-  ( A. x  e.  B  ( U `  x )
( ( ( 1st `  F ) `  x
) J ( ( 1st `  G ) `
 x ) ) ( ( x  e.  B  |->  X ) `  x )  <->  A. y  e.  B  ( U `  y ) ( ( ( 1st `  F
) `  y ) J ( ( 1st `  G ) `  y
) ) ( ( x  e.  B  |->  X ) `  y ) )
12945, 128sylib 208 . 2  |-  ( ph  ->  A. y  e.  B  ( U `  y ) ( ( ( 1st `  F ) `  y
) J ( ( 1st `  G ) `
 y ) ) ( ( x  e.  B  |->  X ) `  y ) )
130 fuciso.q . . 3  |-  Q  =  ( C FuncCat  D )
131 fucinv.i . . 3  |-  I  =  (Inv `  Q )
132130, 10, 83, 5, 16, 131, 4fucinv 16633 . 2  |-  ( ph  ->  ( U ( F I G ) ( x  e.  B  |->  X )  <->  ( U  e.  ( F N G )  /\  ( x  e.  B  |->  X )  e.  ( G N F )  /\  A. y  e.  B  ( U `  y )
( ( ( 1st `  F ) `  y
) J ( ( 1st `  G ) `
 y ) ) ( ( x  e.  B  |->  X ) `  y ) ) ) )
1331, 126, 129, 132mpbir3and 1245 1  |-  ( ph  ->  U ( F I G ) ( x  e.  B  |->  X ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   _Vcvv 3200   <.cop 4183   class class class wbr 4653    |-> cmpt 4729    X. cxp 5112   Rel wrel 5119   -->wf 5884   ` cfv 5888  (class class class)co 6650   1stc1st 7166   2ndc2nd 7167   X_cixp 7908   Basecbs 15857   Hom chom 15952  compcco 15953   Catccat 16325   Idccid 16326  Sectcsect 16404  Invcinv 16405    Func cfunc 16514   Nat cnat 16601   FuncCat cfuc 16602
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-hom 15966  df-cco 15967  df-cat 16329  df-cid 16330  df-sect 16407  df-inv 16408  df-func 16518  df-nat 16603  df-fuc 16604
This theorem is referenced by:  fuciso  16635  yonedainv  16921
  Copyright terms: Public domain W3C validator