| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > archiabllem2a | Structured version Visualization version Unicode version | ||
| Description: Lemma for archiabl 29752, which requires the group to be both left- and right-ordered. (Contributed by Thierry Arnoux, 13-Apr-2018.) |
| Ref | Expression |
|---|---|
| archiabllem.b |
|
| archiabllem.0 |
|
| archiabllem.e |
|
| archiabllem.t |
|
| archiabllem.m |
|
| archiabllem.g |
|
| archiabllem.a |
|
| archiabllem2.1 |
|
| archiabllem2.2 |
|
| archiabllem2.3 |
|
| archiabllem2a.4 |
|
| archiabllem2a.5 |
|
| Ref | Expression |
|---|---|
| archiabllem2a |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpllr 799 |
. . . 4
| |
| 2 | simplrl 800 |
. . . 4
| |
| 3 | simpr 477 |
. . . 4
| |
| 4 | breq2 4657 |
. . . . . 6
| |
| 5 | id 22 |
. . . . . . . 8
| |
| 6 | 5, 5 | oveq12d 6668 |
. . . . . . 7
|
| 7 | 6 | breq1d 4663 |
. . . . . 6
|
| 8 | 4, 7 | anbi12d 747 |
. . . . 5
|
| 9 | 8 | rspcev 3309 |
. . . 4
|
| 10 | 1, 2, 3, 9 | syl12anc 1324 |
. . 3
|
| 11 | simplll 798 |
. . . . . 6
| |
| 12 | archiabllem.g |
. . . . . 6
| |
| 13 | ogrpgrp 29703 |
. . . . . 6
| |
| 14 | 11, 12, 13 | 3syl 18 |
. . . . 5
|
| 15 | archiabllem2a.4 |
. . . . . 6
| |
| 16 | 11, 15 | syl 17 |
. . . . 5
|
| 17 | simpllr 799 |
. . . . 5
| |
| 18 | archiabllem.b |
. . . . . 6
| |
| 19 | eqid 2622 |
. . . . . 6
| |
| 20 | 18, 19 | grpsubcl 17495 |
. . . . 5
|
| 21 | 14, 16, 17, 20 | syl3anc 1326 |
. . . 4
|
| 22 | archiabllem.0 |
. . . . . . 7
| |
| 23 | 18, 22, 19 | grpsubid 17499 |
. . . . . 6
|
| 24 | 14, 17, 23 | syl2anc 693 |
. . . . 5
|
| 25 | 11, 12 | syl 17 |
. . . . . 6
|
| 26 | simplrr 801 |
. . . . . 6
| |
| 27 | archiabllem.t |
. . . . . . 7
| |
| 28 | 18, 27, 19 | ogrpsublt 29722 |
. . . . . 6
|
| 29 | 25, 17, 16, 17, 26, 28 | syl131anc 1339 |
. . . . 5
|
| 30 | 24, 29 | eqbrtrrd 4677 |
. . . 4
|
| 31 | archiabllem2.1 |
. . . . . . 7
| |
| 32 | archiabllem2.2 |
. . . . . . . 8
| |
| 33 | 11, 32 | syl 17 |
. . . . . . 7
|
| 34 | 18, 31 | grpcl 17430 |
. . . . . . . . . 10
|
| 35 | 14, 17, 17, 34 | syl3anc 1326 |
. . . . . . . . 9
|
| 36 | simpr 477 |
. . . . . . . . 9
| |
| 37 | 18, 27, 19 | ogrpsublt 29722 |
. . . . . . . . 9
|
| 38 | 25, 16, 35, 17, 36, 37 | syl131anc 1339 |
. . . . . . . 8
|
| 39 | 18, 31, 19 | grpaddsubass 17505 |
. . . . . . . . . 10
|
| 40 | 14, 17, 17, 17, 39 | syl13anc 1328 |
. . . . . . . . 9
|
| 41 | 24 | oveq2d 6666 |
. . . . . . . . 9
|
| 42 | 18, 31, 22 | grprid 17453 |
. . . . . . . . . 10
|
| 43 | 14, 17, 42 | syl2anc 693 |
. . . . . . . . 9
|
| 44 | 40, 41, 43 | 3eqtrd 2660 |
. . . . . . . 8
|
| 45 | 38, 44 | breqtrd 4679 |
. . . . . . 7
|
| 46 | 18, 27, 31, 14, 33, 21, 17, 21, 45 | ogrpaddltrd 29720 |
. . . . . 6
|
| 47 | 18, 31, 19 | grpnpcan 17507 |
. . . . . . 7
|
| 48 | 14, 16, 17, 47 | syl3anc 1326 |
. . . . . 6
|
| 49 | 46, 48 | breqtrd 4679 |
. . . . 5
|
| 50 | ovexd 6680 |
. . . . . 6
| |
| 51 | archiabllem.e |
. . . . . . 7
| |
| 52 | 51, 27 | pltle 16961 |
. . . . . 6
|
| 53 | 14, 50, 16, 52 | syl3anc 1326 |
. . . . 5
|
| 54 | 49, 53 | mpd 15 |
. . . 4
|
| 55 | breq2 4657 |
. . . . . 6
| |
| 56 | id 22 |
. . . . . . . 8
| |
| 57 | 56, 56 | oveq12d 6668 |
. . . . . . 7
|
| 58 | 57 | breq1d 4663 |
. . . . . 6
|
| 59 | 55, 58 | anbi12d 747 |
. . . . 5
|
| 60 | 59 | rspcev 3309 |
. . . 4
|
| 61 | 21, 30, 54, 60 | syl12anc 1324 |
. . 3
|
| 62 | 12 | ad2antrr 762 |
. . . . 5
|
| 63 | isogrp 29702 |
. . . . . 6
| |
| 64 | 63 | simprbi 480 |
. . . . 5
|
| 65 | omndtos 29705 |
. . . . 5
| |
| 66 | 62, 64, 65 | 3syl 18 |
. . . 4
|
| 67 | 62, 13 | syl 17 |
. . . . 5
|
| 68 | simplr 792 |
. . . . 5
| |
| 69 | 67, 68, 68, 34 | syl3anc 1326 |
. . . 4
|
| 70 | 15 | ad2antrr 762 |
. . . 4
|
| 71 | 18, 51, 27 | tlt2 29664 |
. . . 4
|
| 72 | 66, 69, 70, 71 | syl3anc 1326 |
. . 3
|
| 73 | 10, 61, 72 | mpjaodan 827 |
. 2
|
| 74 | archiabllem2.3 |
. . . . 5
| |
| 75 | 74 | 3expia 1267 |
. . . 4
|
| 76 | 75 | ralrimiva 2966 |
. . 3
|
| 77 | archiabllem2a.5 |
. . 3
| |
| 78 | breq2 4657 |
. . . . 5
| |
| 79 | breq2 4657 |
. . . . . . 7
| |
| 80 | 79 | anbi2d 740 |
. . . . . 6
|
| 81 | 80 | rexbidv 3052 |
. . . . 5
|
| 82 | 78, 81 | imbi12d 334 |
. . . 4
|
| 83 | 82 | rspcv 3305 |
. . 3
|
| 84 | 15, 76, 77, 83 | syl3c 66 |
. 2
|
| 85 | 73, 84 | r19.29a 3078 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-tpos 7352 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-2 11079 df-3 11080 df-4 11081 df-5 11082 df-6 11083 df-7 11084 df-8 11085 df-9 11086 df-dec 11494 df-ndx 15860 df-slot 15861 df-base 15863 df-sets 15864 df-plusg 15954 df-ple 15961 df-0g 16102 df-preset 16928 df-poset 16946 df-plt 16958 df-toset 17034 df-mgm 17242 df-sgrp 17284 df-mnd 17295 df-grp 17425 df-minusg 17426 df-sbg 17427 df-oppg 17776 df-omnd 29699 df-ogrp 29700 |
| This theorem is referenced by: archiabllem2c 29749 |
| Copyright terms: Public domain | W3C validator |