Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  archiabllem2a Structured version   Visualization version   Unicode version

Theorem archiabllem2a 29748
Description: Lemma for archiabl 29752, which requires the group to be both left- and right-ordered. (Contributed by Thierry Arnoux, 13-Apr-2018.)
Hypotheses
Ref Expression
archiabllem.b  |-  B  =  ( Base `  W
)
archiabllem.0  |-  .0.  =  ( 0g `  W )
archiabllem.e  |-  .<_  =  ( le `  W )
archiabllem.t  |-  .<  =  ( lt `  W )
archiabllem.m  |-  .x.  =  (.g
`  W )
archiabllem.g  |-  ( ph  ->  W  e. oGrp )
archiabllem.a  |-  ( ph  ->  W  e. Archi )
archiabllem2.1  |-  .+  =  ( +g  `  W )
archiabllem2.2  |-  ( ph  ->  (oppg
`  W )  e. oGrp
)
archiabllem2.3  |-  ( (
ph  /\  a  e.  B  /\  .0.  .<  a
)  ->  E. b  e.  B  (  .0.  .< 
b  /\  b  .<  a ) )
archiabllem2a.4  |-  ( ph  ->  X  e.  B )
archiabllem2a.5  |-  ( ph  ->  .0.  .<  X )
Assertion
Ref Expression
archiabllem2a  |-  ( ph  ->  E. c  e.  B  (  .0.  .<  c  /\  ( c  .+  c
)  .<_  X ) )
Distinct variable groups:    a, b,
c, B    W, a,
b, c    X, a,
b, c    ph, a, b    .+ , a, b, c    .<_ , a, b, c    .< , a, b, c    .0. , a, b,
c
Allowed substitution hints:    ph( c)    .x. ( a,
b, c)

Proof of Theorem archiabllem2a
StepHypRef Expression
1 simpllr 799 . . . 4  |-  ( ( ( ( ph  /\  b  e.  B )  /\  (  .0.  .<  b  /\  b  .<  X ) )  /\  ( b 
.+  b )  .<_  X )  ->  b  e.  B )
2 simplrl 800 . . . 4  |-  ( ( ( ( ph  /\  b  e.  B )  /\  (  .0.  .<  b  /\  b  .<  X ) )  /\  ( b 
.+  b )  .<_  X )  ->  .0.  .< 
b )
3 simpr 477 . . . 4  |-  ( ( ( ( ph  /\  b  e.  B )  /\  (  .0.  .<  b  /\  b  .<  X ) )  /\  ( b 
.+  b )  .<_  X )  ->  (
b  .+  b )  .<_  X )
4 breq2 4657 . . . . . 6  |-  ( c  =  b  ->  (  .0.  .<  c  <->  .0.  .<  b
) )
5 id 22 . . . . . . . 8  |-  ( c  =  b  ->  c  =  b )
65, 5oveq12d 6668 . . . . . . 7  |-  ( c  =  b  ->  (
c  .+  c )  =  ( b  .+  b ) )
76breq1d 4663 . . . . . 6  |-  ( c  =  b  ->  (
( c  .+  c
)  .<_  X  <->  ( b  .+  b )  .<_  X ) )
84, 7anbi12d 747 . . . . 5  |-  ( c  =  b  ->  (
(  .0.  .<  c  /\  ( c  .+  c
)  .<_  X )  <->  (  .0.  .< 
b  /\  ( b  .+  b )  .<_  X ) ) )
98rspcev 3309 . . . 4  |-  ( ( b  e.  B  /\  (  .0.  .<  b  /\  ( b  .+  b
)  .<_  X ) )  ->  E. c  e.  B  (  .0.  .<  c  /\  ( c  .+  c
)  .<_  X ) )
101, 2, 3, 9syl12anc 1324 . . 3  |-  ( ( ( ( ph  /\  b  e.  B )  /\  (  .0.  .<  b  /\  b  .<  X ) )  /\  ( b 
.+  b )  .<_  X )  ->  E. c  e.  B  (  .0.  .< 
c  /\  ( c  .+  c )  .<_  X ) )
11 simplll 798 . . . . . 6  |-  ( ( ( ( ph  /\  b  e.  B )  /\  (  .0.  .<  b  /\  b  .<  X ) )  /\  X  .<  ( b  .+  b ) )  ->  ph )
12 archiabllem.g . . . . . 6  |-  ( ph  ->  W  e. oGrp )
13 ogrpgrp 29703 . . . . . 6  |-  ( W  e. oGrp  ->  W  e.  Grp )
1411, 12, 133syl 18 . . . . 5  |-  ( ( ( ( ph  /\  b  e.  B )  /\  (  .0.  .<  b  /\  b  .<  X ) )  /\  X  .<  ( b  .+  b ) )  ->  W  e.  Grp )
15 archiabllem2a.4 . . . . . 6  |-  ( ph  ->  X  e.  B )
1611, 15syl 17 . . . . 5  |-  ( ( ( ( ph  /\  b  e.  B )  /\  (  .0.  .<  b  /\  b  .<  X ) )  /\  X  .<  ( b  .+  b ) )  ->  X  e.  B )
17 simpllr 799 . . . . 5  |-  ( ( ( ( ph  /\  b  e.  B )  /\  (  .0.  .<  b  /\  b  .<  X ) )  /\  X  .<  ( b  .+  b ) )  ->  b  e.  B )
18 archiabllem.b . . . . . 6  |-  B  =  ( Base `  W
)
19 eqid 2622 . . . . . 6  |-  ( -g `  W )  =  (
-g `  W )
2018, 19grpsubcl 17495 . . . . 5  |-  ( ( W  e.  Grp  /\  X  e.  B  /\  b  e.  B )  ->  ( X ( -g `  W ) b )  e.  B )
2114, 16, 17, 20syl3anc 1326 . . . 4  |-  ( ( ( ( ph  /\  b  e.  B )  /\  (  .0.  .<  b  /\  b  .<  X ) )  /\  X  .<  ( b  .+  b ) )  ->  ( X
( -g `  W ) b )  e.  B
)
22 archiabllem.0 . . . . . . 7  |-  .0.  =  ( 0g `  W )
2318, 22, 19grpsubid 17499 . . . . . 6  |-  ( ( W  e.  Grp  /\  b  e.  B )  ->  ( b ( -g `  W ) b )  =  .0.  )
2414, 17, 23syl2anc 693 . . . . 5  |-  ( ( ( ( ph  /\  b  e.  B )  /\  (  .0.  .<  b  /\  b  .<  X ) )  /\  X  .<  ( b  .+  b ) )  ->  ( b
( -g `  W ) b )  =  .0.  )
2511, 12syl 17 . . . . . 6  |-  ( ( ( ( ph  /\  b  e.  B )  /\  (  .0.  .<  b  /\  b  .<  X ) )  /\  X  .<  ( b  .+  b ) )  ->  W  e. oGrp )
26 simplrr 801 . . . . . 6  |-  ( ( ( ( ph  /\  b  e.  B )  /\  (  .0.  .<  b  /\  b  .<  X ) )  /\  X  .<  ( b  .+  b ) )  ->  b  .<  X )
27 archiabllem.t . . . . . . 7  |-  .<  =  ( lt `  W )
2818, 27, 19ogrpsublt 29722 . . . . . 6  |-  ( ( W  e. oGrp  /\  (
b  e.  B  /\  X  e.  B  /\  b  e.  B )  /\  b  .<  X )  ->  ( b (
-g `  W )
b )  .<  ( X ( -g `  W
) b ) )
2925, 17, 16, 17, 26, 28syl131anc 1339 . . . . 5  |-  ( ( ( ( ph  /\  b  e.  B )  /\  (  .0.  .<  b  /\  b  .<  X ) )  /\  X  .<  ( b  .+  b ) )  ->  ( b
( -g `  W ) b )  .<  ( X ( -g `  W
) b ) )
3024, 29eqbrtrrd 4677 . . . 4  |-  ( ( ( ( ph  /\  b  e.  B )  /\  (  .0.  .<  b  /\  b  .<  X ) )  /\  X  .<  ( b  .+  b ) )  ->  .0.  .<  ( X ( -g `  W
) b ) )
31 archiabllem2.1 . . . . . . 7  |-  .+  =  ( +g  `  W )
32 archiabllem2.2 . . . . . . . 8  |-  ( ph  ->  (oppg
`  W )  e. oGrp
)
3311, 32syl 17 . . . . . . 7  |-  ( ( ( ( ph  /\  b  e.  B )  /\  (  .0.  .<  b  /\  b  .<  X ) )  /\  X  .<  ( b  .+  b ) )  ->  (oppg
`  W )  e. oGrp
)
3418, 31grpcl 17430 . . . . . . . . . 10  |-  ( ( W  e.  Grp  /\  b  e.  B  /\  b  e.  B )  ->  ( b  .+  b
)  e.  B )
3514, 17, 17, 34syl3anc 1326 . . . . . . . . 9  |-  ( ( ( ( ph  /\  b  e.  B )  /\  (  .0.  .<  b  /\  b  .<  X ) )  /\  X  .<  ( b  .+  b ) )  ->  ( b  .+  b )  e.  B
)
36 simpr 477 . . . . . . . . 9  |-  ( ( ( ( ph  /\  b  e.  B )  /\  (  .0.  .<  b  /\  b  .<  X ) )  /\  X  .<  ( b  .+  b ) )  ->  X  .<  ( b  .+  b ) )
3718, 27, 19ogrpsublt 29722 . . . . . . . . 9  |-  ( ( W  e. oGrp  /\  ( X  e.  B  /\  ( b  .+  b
)  e.  B  /\  b  e.  B )  /\  X  .<  ( b 
.+  b ) )  ->  ( X (
-g `  W )
b )  .<  (
( b  .+  b
) ( -g `  W
) b ) )
3825, 16, 35, 17, 36, 37syl131anc 1339 . . . . . . . 8  |-  ( ( ( ( ph  /\  b  e.  B )  /\  (  .0.  .<  b  /\  b  .<  X ) )  /\  X  .<  ( b  .+  b ) )  ->  ( X
( -g `  W ) b )  .<  (
( b  .+  b
) ( -g `  W
) b ) )
3918, 31, 19grpaddsubass 17505 . . . . . . . . . 10  |-  ( ( W  e.  Grp  /\  ( b  e.  B  /\  b  e.  B  /\  b  e.  B
) )  ->  (
( b  .+  b
) ( -g `  W
) b )  =  ( b  .+  (
b ( -g `  W
) b ) ) )
4014, 17, 17, 17, 39syl13anc 1328 . . . . . . . . 9  |-  ( ( ( ( ph  /\  b  e.  B )  /\  (  .0.  .<  b  /\  b  .<  X ) )  /\  X  .<  ( b  .+  b ) )  ->  ( (
b  .+  b )
( -g `  W ) b )  =  ( b  .+  ( b ( -g `  W
) b ) ) )
4124oveq2d 6666 . . . . . . . . 9  |-  ( ( ( ( ph  /\  b  e.  B )  /\  (  .0.  .<  b  /\  b  .<  X ) )  /\  X  .<  ( b  .+  b ) )  ->  ( b  .+  ( b ( -g `  W ) b ) )  =  ( b 
.+  .0.  ) )
4218, 31, 22grprid 17453 . . . . . . . . . 10  |-  ( ( W  e.  Grp  /\  b  e.  B )  ->  ( b  .+  .0.  )  =  b )
4314, 17, 42syl2anc 693 . . . . . . . . 9  |-  ( ( ( ( ph  /\  b  e.  B )  /\  (  .0.  .<  b  /\  b  .<  X ) )  /\  X  .<  ( b  .+  b ) )  ->  ( b  .+  .0.  )  =  b )
4440, 41, 433eqtrd 2660 . . . . . . . 8  |-  ( ( ( ( ph  /\  b  e.  B )  /\  (  .0.  .<  b  /\  b  .<  X ) )  /\  X  .<  ( b  .+  b ) )  ->  ( (
b  .+  b )
( -g `  W ) b )  =  b )
4538, 44breqtrd 4679 . . . . . . 7  |-  ( ( ( ( ph  /\  b  e.  B )  /\  (  .0.  .<  b  /\  b  .<  X ) )  /\  X  .<  ( b  .+  b ) )  ->  ( X
( -g `  W ) b )  .<  b
)
4618, 27, 31, 14, 33, 21, 17, 21, 45ogrpaddltrd 29720 . . . . . 6  |-  ( ( ( ( ph  /\  b  e.  B )  /\  (  .0.  .<  b  /\  b  .<  X ) )  /\  X  .<  ( b  .+  b ) )  ->  ( ( X ( -g `  W
) b )  .+  ( X ( -g `  W
) b ) ) 
.<  ( ( X (
-g `  W )
b )  .+  b
) )
4718, 31, 19grpnpcan 17507 . . . . . . 7  |-  ( ( W  e.  Grp  /\  X  e.  B  /\  b  e.  B )  ->  ( ( X (
-g `  W )
b )  .+  b
)  =  X )
4814, 16, 17, 47syl3anc 1326 . . . . . 6  |-  ( ( ( ( ph  /\  b  e.  B )  /\  (  .0.  .<  b  /\  b  .<  X ) )  /\  X  .<  ( b  .+  b ) )  ->  ( ( X ( -g `  W
) b )  .+  b )  =  X )
4946, 48breqtrd 4679 . . . . 5  |-  ( ( ( ( ph  /\  b  e.  B )  /\  (  .0.  .<  b  /\  b  .<  X ) )  /\  X  .<  ( b  .+  b ) )  ->  ( ( X ( -g `  W
) b )  .+  ( X ( -g `  W
) b ) ) 
.<  X )
50 ovexd 6680 . . . . . 6  |-  ( ( ( ( ph  /\  b  e.  B )  /\  (  .0.  .<  b  /\  b  .<  X ) )  /\  X  .<  ( b  .+  b ) )  ->  ( ( X ( -g `  W
) b )  .+  ( X ( -g `  W
) b ) )  e.  _V )
51 archiabllem.e . . . . . . 7  |-  .<_  =  ( le `  W )
5251, 27pltle 16961 . . . . . 6  |-  ( ( W  e.  Grp  /\  ( ( X (
-g `  W )
b )  .+  ( X ( -g `  W
) b ) )  e.  _V  /\  X  e.  B )  ->  (
( ( X (
-g `  W )
b )  .+  ( X ( -g `  W
) b ) ) 
.<  X  ->  ( ( X ( -g `  W
) b )  .+  ( X ( -g `  W
) b ) ) 
.<_  X ) )
5314, 50, 16, 52syl3anc 1326 . . . . 5  |-  ( ( ( ( ph  /\  b  e.  B )  /\  (  .0.  .<  b  /\  b  .<  X ) )  /\  X  .<  ( b  .+  b ) )  ->  ( (
( X ( -g `  W ) b ) 
.+  ( X (
-g `  W )
b ) )  .<  X  ->  ( ( X ( -g `  W
) b )  .+  ( X ( -g `  W
) b ) ) 
.<_  X ) )
5449, 53mpd 15 . . . 4  |-  ( ( ( ( ph  /\  b  e.  B )  /\  (  .0.  .<  b  /\  b  .<  X ) )  /\  X  .<  ( b  .+  b ) )  ->  ( ( X ( -g `  W
) b )  .+  ( X ( -g `  W
) b ) ) 
.<_  X )
55 breq2 4657 . . . . . 6  |-  ( c  =  ( X (
-g `  W )
b )  ->  (  .0.  .<  c  <->  .0.  .<  ( X ( -g `  W
) b ) ) )
56 id 22 . . . . . . . 8  |-  ( c  =  ( X (
-g `  W )
b )  ->  c  =  ( X (
-g `  W )
b ) )
5756, 56oveq12d 6668 . . . . . . 7  |-  ( c  =  ( X (
-g `  W )
b )  ->  (
c  .+  c )  =  ( ( X ( -g `  W
) b )  .+  ( X ( -g `  W
) b ) ) )
5857breq1d 4663 . . . . . 6  |-  ( c  =  ( X (
-g `  W )
b )  ->  (
( c  .+  c
)  .<_  X  <->  ( ( X ( -g `  W
) b )  .+  ( X ( -g `  W
) b ) ) 
.<_  X ) )
5955, 58anbi12d 747 . . . . 5  |-  ( c  =  ( X (
-g `  W )
b )  ->  (
(  .0.  .<  c  /\  ( c  .+  c
)  .<_  X )  <->  (  .0.  .< 
( X ( -g `  W ) b )  /\  ( ( X ( -g `  W
) b )  .+  ( X ( -g `  W
) b ) ) 
.<_  X ) ) )
6059rspcev 3309 . . . 4  |-  ( ( ( X ( -g `  W ) b )  e.  B  /\  (  .0.  .<  ( X (
-g `  W )
b )  /\  (
( X ( -g `  W ) b ) 
.+  ( X (
-g `  W )
b ) )  .<_  X ) )  ->  E. c  e.  B  (  .0.  .<  c  /\  ( c  .+  c
)  .<_  X ) )
6121, 30, 54, 60syl12anc 1324 . . 3  |-  ( ( ( ( ph  /\  b  e.  B )  /\  (  .0.  .<  b  /\  b  .<  X ) )  /\  X  .<  ( b  .+  b ) )  ->  E. c  e.  B  (  .0.  .< 
c  /\  ( c  .+  c )  .<_  X ) )
6212ad2antrr 762 . . . . 5  |-  ( ( ( ph  /\  b  e.  B )  /\  (  .0.  .<  b  /\  b  .<  X ) )  ->  W  e. oGrp )
63 isogrp 29702 . . . . . 6  |-  ( W  e. oGrp 
<->  ( W  e.  Grp  /\  W  e. oMnd ) )
6463simprbi 480 . . . . 5  |-  ( W  e. oGrp  ->  W  e. oMnd )
65 omndtos 29705 . . . . 5  |-  ( W  e. oMnd  ->  W  e. Toset )
6662, 64, 653syl 18 . . . 4  |-  ( ( ( ph  /\  b  e.  B )  /\  (  .0.  .<  b  /\  b  .<  X ) )  ->  W  e. Toset )
6762, 13syl 17 . . . . 5  |-  ( ( ( ph  /\  b  e.  B )  /\  (  .0.  .<  b  /\  b  .<  X ) )  ->  W  e.  Grp )
68 simplr 792 . . . . 5  |-  ( ( ( ph  /\  b  e.  B )  /\  (  .0.  .<  b  /\  b  .<  X ) )  -> 
b  e.  B )
6967, 68, 68, 34syl3anc 1326 . . . 4  |-  ( ( ( ph  /\  b  e.  B )  /\  (  .0.  .<  b  /\  b  .<  X ) )  -> 
( b  .+  b
)  e.  B )
7015ad2antrr 762 . . . 4  |-  ( ( ( ph  /\  b  e.  B )  /\  (  .0.  .<  b  /\  b  .<  X ) )  ->  X  e.  B )
7118, 51, 27tlt2 29664 . . . 4  |-  ( ( W  e. Toset  /\  (
b  .+  b )  e.  B  /\  X  e.  B )  ->  (
( b  .+  b
)  .<_  X  \/  X  .<  ( b  .+  b
) ) )
7266, 69, 70, 71syl3anc 1326 . . 3  |-  ( ( ( ph  /\  b  e.  B )  /\  (  .0.  .<  b  /\  b  .<  X ) )  -> 
( ( b  .+  b )  .<_  X  \/  X  .<  ( b  .+  b ) ) )
7310, 61, 72mpjaodan 827 . 2  |-  ( ( ( ph  /\  b  e.  B )  /\  (  .0.  .<  b  /\  b  .<  X ) )  ->  E. c  e.  B  (  .0.  .<  c  /\  ( c  .+  c
)  .<_  X ) )
74 archiabllem2.3 . . . . 5  |-  ( (
ph  /\  a  e.  B  /\  .0.  .<  a
)  ->  E. b  e.  B  (  .0.  .< 
b  /\  b  .<  a ) )
75743expia 1267 . . . 4  |-  ( (
ph  /\  a  e.  B )  ->  (  .0.  .<  a  ->  E. b  e.  B  (  .0.  .< 
b  /\  b  .<  a ) ) )
7675ralrimiva 2966 . . 3  |-  ( ph  ->  A. a  e.  B  (  .0.  .<  a  ->  E. b  e.  B  (  .0.  .<  b  /\  b  .<  a ) ) )
77 archiabllem2a.5 . . 3  |-  ( ph  ->  .0.  .<  X )
78 breq2 4657 . . . . 5  |-  ( a  =  X  ->  (  .0.  .<  a  <->  .0.  .<  X ) )
79 breq2 4657 . . . . . . 7  |-  ( a  =  X  ->  (
b  .<  a  <->  b  .<  X ) )
8079anbi2d 740 . . . . . 6  |-  ( a  =  X  ->  (
(  .0.  .<  b  /\  b  .<  a )  <-> 
(  .0.  .<  b  /\  b  .<  X ) ) )
8180rexbidv 3052 . . . . 5  |-  ( a  =  X  ->  ( E. b  e.  B  (  .0.  .<  b  /\  b  .<  a )  <->  E. b  e.  B  (  .0.  .< 
b  /\  b  .<  X ) ) )
8278, 81imbi12d 334 . . . 4  |-  ( a  =  X  ->  (
(  .0.  .<  a  ->  E. b  e.  B  (  .0.  .<  b  /\  b  .<  a ) )  <-> 
(  .0.  .<  X  ->  E. b  e.  B  (  .0.  .<  b  /\  b  .<  X ) ) ) )
8382rspcv 3305 . . 3  |-  ( X  e.  B  ->  ( A. a  e.  B  (  .0.  .<  a  ->  E. b  e.  B  (  .0.  .<  b  /\  b  .<  a ) )  ->  (  .0.  .<  X  ->  E. b  e.  B  (  .0.  .<  b  /\  b  .<  X ) ) ) )
8415, 76, 77, 83syl3c 66 . 2  |-  ( ph  ->  E. b  e.  B  (  .0.  .<  b  /\  b  .<  X ) )
8573, 84r19.29a 3078 1  |-  ( ph  ->  E. c  e.  B  (  .0.  .<  c  /\  ( c  .+  c
)  .<_  X ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   _Vcvv 3200   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   Basecbs 15857   +g cplusg 15941   lecple 15948   0gc0g 16100   ltcplt 16941  Tosetctos 17033   Grpcgrp 17422   -gcsg 17424  .gcmg 17540  oppgcoppg 17775  oMndcomnd 29697  oGrpcogrp 29698  Archicarchi 29731
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-dec 11494  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-plusg 15954  df-ple 15961  df-0g 16102  df-preset 16928  df-poset 16946  df-plt 16958  df-toset 17034  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-sbg 17427  df-oppg 17776  df-omnd 29699  df-ogrp 29700
This theorem is referenced by:  archiabllem2c  29749
  Copyright terms: Public domain W3C validator